Intermediate Geometry : Quadrilaterals

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #81 : Parallelograms

In the figure, the area of the parallelogram is \displaystyle 150. Find the length of the base.

8

Possible Answers:

\displaystyle 25

\displaystyle 10

\displaystyle 20

\displaystyle 15

Correct answer:

\displaystyle 15

Explanation:

13

Recall how to find the area of a parallelogram:

\displaystyle \text{Area of Parallelogram}=(\text{base})(\text{height})

Now, substitute in the area, base, and height values that are given by the question.

\displaystyle x(x+5)=150

Expand this equation.

\displaystyle x^2+5x=150

\displaystyle x^2+5x-150=0

Now factor this equation.

\displaystyle (x-10)(x+15)=0

Solve for \displaystyle x.

\displaystyle x=10, x=-5

Since lengths of bases and heights can only be positive, \displaystyle x=10.

Notice that the length of the base is given by the expression \displaystyle x+5. Substitute in the value of \displaystyle x to find the length of the base.

\displaystyle \text{Length of Base}=x+5

\displaystyle \text{Length of Base}=10+5

\displaystyle \text{Length of Base}=15

Example Question #421 : Intermediate Geometry

In the figure, the area of the parallelogram is \displaystyle 500. Find the length of the base.

8

Possible Answers:

\displaystyle 20

\displaystyle 25

\displaystyle 15

\displaystyle 30

Correct answer:

\displaystyle 25

Explanation:

13

Recall how to find the area of a parallelogram:

\displaystyle \text{Area of Parallelogram}=(\text{base})(\text{height})

Now, substitute in the area, base, and height values that are given by the question.

\displaystyle x(x+5)=500

Expand this equation.

\displaystyle x^2+5x=500

\displaystyle x^2+5x-500=0

Now factor this equation.

\displaystyle (x-20)(x+25)=0

Solve for \displaystyle x.

\displaystyle x=20, x=-25

Since lengths of bases and heights can only be positive, \displaystyle x=20.

Notice that the length of the base is given by the expression \displaystyle x+5. Substitute in the value of \displaystyle x to find the length of the base.

\displaystyle \text{Length of Base}=x+5

\displaystyle \text{Length of Base}=20+5

\displaystyle \text{Length of Base}=25

Example Question #40 : How To Find The Area Of A Parallelogram

In the figure, the area of the parallelogram is \displaystyle 164. Find the length of the base.

9

Possible Answers:

\displaystyle 43

\displaystyle 41

\displaystyle 39

\displaystyle 37

Correct answer:

\displaystyle 41

Explanation:

13

Recall how to find the area of a parallelogram:

\displaystyle \text{Area of Parallelogram}=(\text{base})(\text{height})

Now, substitute in the area, base, and height values that are given by the question.

\displaystyle x(x+37)=164

Expand this equation.

\displaystyle x^2+37x=164

\displaystyle x^2+37x-164=0

Now factor this equation.

\displaystyle (x-4)(x+41)=0

Solve for \displaystyle x.

\displaystyle x=4, x=-41

Since lengths of bases and heights can only be positive, \displaystyle x=4.

Notice that the length of the base is given by the expression \displaystyle x+37. Substitute in the value of \displaystyle x to find the length of the base.

\displaystyle \text{Length of Base}=x+37

\displaystyle \text{Length of Base}=4+37

\displaystyle \text{Length of Base}=41

Example Question #81 : Parallelograms

In the figure, the area of the parallelogram is \displaystyle 256. Find the length of the base.

11

Possible Answers:

\displaystyle 32

\displaystyle 30

\displaystyle 28

\displaystyle 38

Correct answer:

\displaystyle 32

Explanation:

13

Recall how to find the area of a parallelogram:

\displaystyle \text{Area of Parallelogram}=(\text{base})(\text{height})

Now, substitute in the area, base, and height values that are given by the question.

\displaystyle x(x+24)=256

Expand this equation.

\displaystyle x^2+24x=256

\displaystyle x^2+24x-256=0

Now factor this equation.

\displaystyle (x-8)(x+32)=0

Solve for \displaystyle x.

\displaystyle x=8, x=-32

Since lengths of bases and heights can only be positive, \displaystyle x=8.

Notice that the length of the base is given by the expression \displaystyle x+24. Substitute in the value of \displaystyle x to find the length of the base.

\displaystyle \text{Length of Base}=x+24

\displaystyle \text{Length of Base}=8+24

\displaystyle \text{Length of Base}=32

Example Question #82 : Parallelograms

In the figure, the area of the parallelogram is \displaystyle 128. Find the length of the base.

10

Possible Answers:

\displaystyle 16

\displaystyle 12

\displaystyle 8

\displaystyle 4

Correct answer:

\displaystyle 8

Explanation:

13

Recall how to find the area of a parallelogram:

\displaystyle \text{Area of Parallelogram}=(\text{base})(\text{height})

Now, substitute in the area, base, and height values that are given by the question.

\displaystyle x(x-8)=128

Expand this equation.

\displaystyle x^2-8x=128

\displaystyle x^2-8x-128=0

Now factor this equation.

\displaystyle (x-16)(x+8)=0

Solve for \displaystyle x.

\displaystyle x=16, x=-8

Since lengths of bases and heights can only be positive, \displaystyle x=16.

Notice that the length of the base is given by the expression \displaystyle x-8. Substitute in the value of \displaystyle x to find the length of the base.

\displaystyle \text{Length of Base}=x-8

\displaystyle \text{Length of Base}=16-8

\displaystyle \text{Length of Base}=8

Example Question #421 : Plane Geometry

Find the area of the parallelogram.

12

Possible Answers:

\displaystyle 169.48

\displaystyle 184.09

\displaystyle 199.23

\displaystyle 186.23

Correct answer:

\displaystyle 186.23

Explanation:

13

Recall how to find the area of a parallelogram:

\displaystyle \text{Area}=\text{base}\times\text{height}

From the given parallelogram, we will need to use the Pythagorean Theorem to find the length of the height of the parallelogram.

\displaystyle \text{Hypotenuse}^2=\text{Triangle base}^2+\text{height}^2

\displaystyle \text{height}^2=\text{Hypotenuse}^2-\text{Triangle base}^2

\displaystyle \text{height}=\sqrt{\text{Hypotenuse}^2-\text{Triangle base}^2}

Plug in the given values to find the length of the height.

\displaystyle \text{height}=\sqrt{13^2-7^2}=\sqrt{169-49}=\sqrt{120}

Now, use the height to find the area of the parallelogram.

\displaystyle \text{Area}=17\times\sqrt{120}=186.23

Remember to round to \displaystyle 2 places after the decimal.

Example Question #421 : Plane Geometry

Find the area of the parallelogram.

1

Possible Answers:

\displaystyle 54.99

\displaystyle 60.31

\displaystyle 42.19

\displaystyle 58.29

Correct answer:

\displaystyle 54.99

Explanation:

13

Recall how to find the area of a parallelogram:

\displaystyle \text{Area}=\text{base}\times\text{height}

From the given parallelogram, we will need to use the Pythagorean Theorem to find the length of the height of the parallelogram.

\displaystyle \text{Hypotenuse}^2=\text{Triangle base}^2+\text{height}^2

\displaystyle \text{height}^2=\text{Hypotenuse}^2-\text{Triangle base}^2

\displaystyle \text{height}=\sqrt{\text{Hypotenuse}^2-\text{Triangle base}^2}

Plug in the given values to find the length of the height.

\displaystyle \text{height}=\sqrt{5^2-2^2}=\sqrt{25-4}=\sqrt{21}

Now, use the height to find the area of the parallelogram.

\displaystyle \text{Area}=12\times\sqrt{21}=54.99

Remember to round to \displaystyle 2 places after the decimal.

Example Question #251 : Quadrilaterals

Find the area of the parallelogram.

2

Possible Answers:

\displaystyle 189

\displaystyle 213

\displaystyle 240

\displaystyle 256

Correct answer:

\displaystyle 240

Explanation:

13

Recall how to find the area of a parallelogram:

\displaystyle \text{Area}=\text{base}\times\text{height}

From the given parallelogram, we will need to use the Pythagorean Theorem to find the length of the height of the parallelogram.

\displaystyle \text{Hypotenuse}^2=\text{Triangle base}^2+\text{height}^2

\displaystyle \text{height}^2=\text{Hypotenuse}^2-\text{Triangle base}^2

\displaystyle \text{height}=\sqrt{\text{Hypotenuse}^2-\text{Triangle base}^2}

Plug in the given values to find the length of the height.

\displaystyle \text{height}=\sqrt{15^2-9^2}=\sqrt{225-81}=12

Now, use the height to find the area of the parallelogram.

\displaystyle \text{Area}=12\times20=240

Remember to round to \displaystyle 2 places after the decimal.

Example Question #41 : How To Find The Area Of A Parallelogram

Find the area of the parallelogram.

3

Possible Answers:

\displaystyle 60.06

\displaystyle 78.45

\displaystyle 69.22

\displaystyle 62.61

Correct answer:

\displaystyle 62.61

Explanation:

13

Recall how to find the area of a parallelogram:

\displaystyle \text{Area}=\text{base}\times\text{height}

From the given parallelogram, we will need to use the Pythagorean Theorem to find the length of the height of the parallelogram.

\displaystyle \text{Hypotenuse}^2=\text{Triangle base}^2+\text{height}^2

\displaystyle \text{height}^2=\text{Hypotenuse}^2-\text{Triangle base}^2

\displaystyle \text{height}=\sqrt{\text{Hypotenuse}^2-\text{Triangle base}^2}

Plug in the given values to find the length of the height.

\displaystyle \text{height}=\sqrt{6^2-4^2}=\sqrt{36-16}=\sqrt{20}

Now, use the height to find the area of the parallelogram.

\displaystyle \text{Area}=16\times\sqrt{20}=62.61

Remember to round to \displaystyle 2 places after the decimal.

Example Question #422 : Plane Geometry

Find the area of the parallelogram.

4

Possible Answers:

\displaystyle 95.61

\displaystyle 82.50

\displaystyle 93.67

\displaystyle 90.88

Correct answer:

\displaystyle 93.67

Explanation:

13

Recall how to find the area of a parallelogram:

\displaystyle \text{Area}=\text{base}\times\text{height}

From the given parallelogram, we will need to use the Pythagorean Theorem to find the length of the height of the parallelogram.

\displaystyle \text{Hypotenuse}^2=\text{Triangle base}^2+\text{height}^2

\displaystyle \text{height}^2=\text{Hypotenuse}^2-\text{Triangle base}^2

\displaystyle \text{height}=\sqrt{\text{Hypotenuse}^2-\text{Triangle base}^2}

Plug in the given values to find the length of the height.

\displaystyle \text{height}=\sqrt{8^2-5^2}=\sqrt{64-25}=\sqrt{39}

Now, use the height to find the area of the parallelogram.

\displaystyle \text{Area}=15\times\sqrt{39}=93.67

Remember to round to \displaystyle 2 places after the decimal.

Learning Tools by Varsity Tutors