All Human Anatomy and Physiology Resources
Example Questions
Example Question #1 : Respiratory Physiology
While breathing, the diaphragm alternately contracts and relaxes to change the pressure of the lungs. Which of the following is correct during expiration?
Atmospheric pressure in the lungs
Decreased pressure in the lungs
Zero pressure in the lungs
Increased pressure in the lungs
Pressure does not affect how humans breathe
Increased pressure in the lungs
When exhaling, the lungs elasticity compresses the walls increasing the pressure within so that it exceeds atmospheric pressure and forces air out. Humans, despite how it might feel, do not suck in air. Rather pressure differences allow air to rush in and out. During expiration, the diaphragm relaxes, bowing up into the thoracic cavity, thereby decreasing the volume of the thoracic cavity. This results in a corresponding increase in pressure (Boyle's law), and thus the movement of air from the lungs out of the body through the upper respiratory structures.
Example Question #7 : Help With Inspiration And Expiration Physiology
Which of the following best describes the physiological mechanism used by the human body during a normal inspiratory phase of breathing?
Idiopathic pulmonary fibrosis
Frank-Starling mechanism
Positive-pressure
Negative-pressure
Glomerular filtration
Negative-pressure
During the normal inspiratory phase of breathing, in other words, when a human is "breathing in," the physiological mechanism used is called "negative-pressure" breathing. Negative-pressure refers to the pressure in the chest cavity as compared to the surrounding environment. The body generates negative-pressure in the chest cavity during breathing by the contraction of the diaphragm muscle (it pulls downward, expanding the thoracic cavity size and space for the lungs to fill), and the outward expansion of the ribcage (which also expands the thoracic cavity size and provides more space for the lungs to fill). With the increased volume of the thoracic cavity generated, this creates the negative pressure that is needed to draw air into the lungs down its gradient of higher pressure (outside the body/thorax) to lower pressure (into the lungs/thorax). Positive-pressure is an incorrect choice because it is the opposite of what occurs during normal human inspiration.
Positive-pressure is sometimes artificially used in the medical setting with machines in patients with obstructive sleep apnea, or in patients who cannot breathe on their own, but is not a part of standard physiological respiration. The Frank-Starling mechanism describes the mechanism by which the heart pumps blood, but does not describe respiration. Glomerular filtration describes the mechanism by which the glomeruli of the kidneys initially filter blood, but does not describe respiration. Idiopathic pulmonary fibrosis is a disease of the interstitium of lung tissue, but does not describe the physiological mechanism used during inspiration.
Example Question #4 : Help With Inspiration And Expiration Physiology
Which nerve is responsible for innervating the diaphragm during respiration?
Sympathetic trunk
Phrenic nerve
Vagus nerve
Hypogastric nerve
Musculocutaneous nerve
Phrenic nerve
The phrenic nerve is the nerve responsible for innervation of the diaphragm. The term phrenic is often associated with descriptions of the diaphragm (i.e cardiophrenic ligament is a ligament associated with connecting the diaphragm to the pericardium of the heart)
Example Question #3 : Help With Inspiration And Expiration Physiology
You are a physician taking care of a patient with Chronic Obstructive Pulmonary Disease (COPD), a disease that results in difficulty expiring air from the lungs, but generally does not affect the ability to inspire air. You measure the amount of that the patient expires in a single breath. What do you expect the readings to be during this expired breath?
The patient's expired content will be higher than that of a healthy person.
The patient's expired content will be lower than that of a healthy person.
The patient's expired content depends on their gender.
The patient's expired content will be the same as that of a healthy person.
None of the other answers are correct.
The patient's expired content will be higher than that of a healthy person.
In this patient with Chronic Obstructive Pulmonary Disease (COPD), which is a disease that results in difficulty expiring air (and generally does not affect one's ability to inspire air), we would expect to see an increased level of in the air that he/she expires, as compared to someone without COPD. Although this is a medically-oriented question, this does not require you to know anything about COPD that is not already supplied in the question. By stating that the ability to expire air is impacted but that the ability to inspire is generally not affected, this calls upon your knowledge of pulmonary physiology, telling you that if inspiration is not affected, levels are probably not significantly affected, and that if expiration is affected, levels are probably affected.
Once you identify that levels are affected in COPD, the question now is, how exactly are they affected? In a COPD patient, it is stated in the question stem, that they have a decreased ability to expire air. When a healthy person expires air, they remove from the body. In a COPD patient, who therefore has a decreased ability to remove from the lungs, if we measured the amount of a in a single breath, we would expect it to be elevated as compared to a healthy individual. At first glance, this may seem counter-intuitive, since we are stating that COPD patients have trouble removing from the body. However, the air that they expire is the same air that is coming from their lungs, which contains the elevated levels of . Thus, to answer the question, we expect the reading for the expired breath to be elevated as compared to that of a healthy person.
Example Question #5 : Help With Inspiration And Expiration Physiology
The contraction of the abdominal muscles taking place is important in __________.
none of the answer choices
normal (quiet) inspiration
forced (maximum) inspiration
forced (maximum) expiration
normal (quiet) expiration
forced (maximum) expiration
During forced maximum expiration, the lungs are trying their best to push air out of the lungs with the most force. This cannot be accomplished by the lungs alone, so the additional contraction of the abdominal muscles aid to help push air out of the lungs with maximum force.
This is different from normal (quiet) expiration, where only the elastic recoil of the lungs are needed with no additional muscle contractions. Normal expiration does not require pushing air out of the lungs with force.
Example Question #11 : Respiratory Physiology
A man who suffers from complete paralysis of his intercostal muscles would still have a normal value for his __________.
None of the volumes listed
total lung capacity (TLC)
expiratory reserve volume (ERV)
inspiratory reserve volume (IRV)
vital capacity (VC)
None of the volumes listed
None of the volumes listed would be normal. The internal intercostal muscles contribute to forced expiration and would affect ERV, TLC and VC. The external intercostal muscles contribute to inspiration and would affect the IRV, TLC and VC. Thus, none of the above volumes could be normal in a man who has non-functioning intercostal muscles.
Example Question #12 : Respiratory Physiology
When exercising, the muscles of inspiration include __________.
transversus abdominis, rectus abdominis, external intercostals
external intercostals, scalene muscles, sternocleidomastoids
internal and external obliques
internal intercostals only
rectus abdominis, external intercostals, internal intercostals
external intercostals, scalene muscles, sternocleidomastoids
When exercising, the muscles of inspiration include: external intercostals, scalene muscles, sternocleidomastoids.
When exercising, the muscles of expiration include: rectus abdominis, internal and external obliques, transversus abdominis, internal intercostals.
Example Question #13 : Respiratory Physiology
During quiet breathing, which of the following is the main inspiratory muscle operating?
diaphraghm
internal intercostals
accessory muscles
abdominal wall muscles
external intercostals
diaphraghm
The main inspiratory muscle involved in quiet breathing is the diaphragm, which is a dome shaped sheet of skeletal muscle that is attached to the ribs, sternum, and vertebral column. External intercostals are also involved in quiet breathing, but if these muscles were impaired, quiet breathing would still continue because the diaphragm is the main muscle involved. Accessory muscles are not involved in quiet breathing, but may become involved during exercise. The abdominal wall muscles and internal muscles are both involved in expiration.
Example Question #14 : Respiratory Physiology
Both food and air pass through all except which of the following sections of the pharynx?
All pharynx sections allow passage of both food and air
Laryngopharynx
Nasopharynx
Oropharynx
Laryngopharynx
The pharynx is located posterior to the nose and mouth and receives both inhaled air and masticated food before they are transferred to the trachea and esophagus, respectively. The pharynx is divided into three sections: the nasopharynx, oropharynx, and laryngopharynx. Food and air first enter the nasopharynx and proceed to the oropharynx. The laryngopharynx is the last portion of the pharynx, and is superior to the larynx, which is the passageway for air. Food is not meant to pass through the laryngopharynx and will result in coughing if it does.
Example Question #1 : Help With Upper Respiratory Physiology
Which structure is shared by the respiratory and digestive systems?
Trachea
Esophagus
Pharynx
Pyloric sphincter
Alveoli
Pharynx
The pharynx is shared by the respiratory and digestive systems, and is separated into three sections. The nasopharynx is primarily used for respiration, while the laryngopharynx is primarily used for digestion; it is inferior to the epiglottis and connects to the esophagus. The oropharynx is shared by pathways for both respiration and digestion.
The trachea and alveoli are exclusively used for respiration, while the esophagus and pyloric sphincter are exclusively used for digestion. Alveoli are the site of gas exchange in the lungs. The pyloric sphincter connects the stomach to the small intestine.
Certified Tutor
Certified Tutor