HSPT Math : HSPT Mathematics

Study concepts, example questions & explanations for HSPT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #521 : Problem Solving

Table

Mr. and Mrs. Williams are hosting a party with three other couples. The above shows their two tables along with their seats.

How many ways can the eight people be seated so that each husband-and-wife couple are at the same table?

Possible Answers:

Correct answer:

Explanation:

First, it is necessary to choose the couples that are each table. There are

 ways to choose the two couples that will be at the left table; this is equal to

.

Once those two couples are chosen, the remaining two couples will be at right.

For each table, there are 

ways to seat the four chosen persons.

By the multiplication principle. there will be 

 different arrangements that seat all four couples together.

Example Question #522 : Problem Solving

Table

Mr. And Mrs. Jones have invited six guests to dinner, including their daughter Rachel. The above show their kitchen table with the locations of its eight seats. 

It is desired that Rachel sit in either Seat 3 or Seat 7 between her parents. How many arrangements are possible that conform to this specification?

Possible Answers:

Correct answer:

Explanation:

We can apply the multiplication principle here. First, there are two possible places Rachel can occupy. One this is decided, there are two ways to seat her parents - with Mr. Jones to her left and Mrs. Jones to her right, and vice versa. The number of ways to seat the remaining five guests in the remaining five seats is 

.

Therefore, the number of arrangements fulfilling the requirement is

.

Example Question #523 : Problem Solving

Washington High School held an election for student body president. There were four candidates: Allen, Paul, Veronica, and Wendy. Voting was conducted over two days.

The votes cast on the first day were counted, and this was the result:

Allen: 72

Paul: 56

Veronica: 76

Wendy: 40

The votes cast on the second day were counted, and this was the result:

Allen: 85

Paul: 43

Veronica: 70

Wendy: 92

According to the rules, a student must win a majority of the votes to be elected; if no candidate wins a majority, there is a runoff between the two highest vote-getters.

Which of the following is true of the results?

Possible Answers:

Veronica and Wendy will face each other in a runoff.

Allen and Veronica will face each other in a runoff.

Allen and Wendy will face each other in a runoff.

Allen won the election outright.

Correct answer:

Allen and Veronica will face each other in a runoff.

Explanation:

For each candidate, add the two day totals:

Allen: 

Paul: 

Veronica: 

Wendy: 

Allen was the highest vote-getter. However, Allen got 157 votes, and his opponents got a total of  votes, so Allen did not get a majority. He will fac the second-highest vote-getter, Veronica, in a runoff.

Example Question #45 : How To Do Other Word Problems

Jefferson High School held an election for student body president. There were four candidates: Ahmad, Michiko, Quinn, and Zane. 

The initial count was as follows:

Ahmad: 193

Michiko: 598

Quinn: 210

Zane: 189

The next day, it was discovered that 115 ballots remained uncounted. The student in charge of counting them, however, only reported the percent of students who voted for each candidate:

Ahmad: 21.7%

Michiko: 42.6%

Quinn: 18.3%

Zane: 17.4%

According to the rules, a student must win a majority of the votes to be elected; if no candidate wins a majority, there is a runoff between the two highest vote-getters.

Which of the following is true of the results?

Possible Answers:

Michiko and Ahmad  will face each other in a runoff.

Michiko and Zane will face each other in a runoff.

Michiko and Quinn will face each other in a runoff.

Michiko won the election outright.

Correct answer:

Michiko and Quinn will face each other in a runoff.

Explanation:

Ahmad received 193 votes plus 21.7% of the previously uncounted 115 votes, for a total of

 votes.

Michiko received 598 votes plus 42.6% of the previously uncounted 115 votes, for a total of

 votes.

Quinn received 210 votes plus 18.3% of the previously uncounted 115 votes, for a total of

 votes.

Zane received 189 votes plus 17.4% of the previously uncounted 115 votes, for a total of

 votes.

Michiko got the most votes with 647. Her opponents won a total of

 votes, more than Michiko, so Michiko did not win a majority. She will face the second-highest vote-getter, Quinn, in a runoff.

Example Question #82 : Word Problems

Define the universal set to be the set of all people.

Let be the set of all people who speak Dutch, Let be the set of all people who speak Spanish, and be the set of all people who speak Arabic.

Jim speaks only two languages - English and Arabic.Julie speaks only two languages - English and Dutch.

Who would be in the set ?

Possible Answers:

Julie, but not Jim

Both Julie and Jim

Jim, but not Julie

Neither Julie nor  Jim

Correct answer:

Jim, but not Julie

Explanation:

A person in the set - the union of the sets  and  - would have to fit either or both of the following descriptions:

The person could be in the set , in which case (s)he speaks Arabic. Jim speaks Arabic, so he is in ; consequently, he is in . Julie does not qualify for inclusion in this set this way.

The person could be in set , which means (s)he is in both , the complement of , and , the complement of . (S)he would have to speak neither Dutch nor Spanish. Julie speaks Dutch, so she does not qualify for inclusion in this way either.

Example Question #46 : How To Do Other Word Problems

Define the universal set to be the set of all people. Let  and  be the set of all dancers and the set of all singers, respectively.

Mary is a dancer and a singer. Florence is neither a singer nor a dancer. Which of the ladies is in the set  ?

Possible Answers:

Mary, but not Florence

Neither Mary nor Florence

Florence, but not Mary 

Both Mary and Florence

Correct answer:

Neither Mary nor Florence

Explanation:

 is the set of dancers. , the complement of , is the set of persons not in  - that is, the set of persons who are not singers.  is the intersection of the two, or the set of all persons in both  and ; to be in , a person must be a dancer and must not be a singer. Mary is excluded from  because she is a singer; Florence is excluded because she is not a dancer.

Example Question #51 : How To Do Other Word Problems

Define the universal set to be the set of all people. Let  be the set of people who know how to play spades, and  be the set of people who know how to play hearts.

Beyonce knows how to play hearts, but she doesn't know how to play spades. Aaliyah knows how to play spades, but she doesn't know how to play hearts. Which of the ladies falls in the set  ?

Possible Answers:

Aaliyah, but not Beyonce

Neither Beyonce nor Aaliyah

Beyonce, but not Aaliyah

Both Beyonce and Aaliyah

Correct answer:

Neither Beyonce nor Aaliyah

Explanation:

By DeMorgan's Laws, 

That is, the complement of the union of the sets is the intersection of the complements of the sets. Therefore, for a person to be in this set, it is necessary for the person to be in the complements of both  and  - that is, the person cannot be in either set. Any person who can play spades or hearts must be excluded, and since both Beyonce and Aaliyah can play at least one game, both are excluded.

Example Question #52 : How To Do Other Word Problems

Let the universal set be the set of positive integers. Let  be the set of prime numbers and  be the set of odd numbers. Which of the following is in the set  ?

Possible Answers:

Correct answer:

Explanation:

 is the intersection of two sets. One is the complement of , which is the set of all elements not in ; these are the numbers that are not prime. The other is , the set of all odd numbers. Therefore, the correct choice must be odd and not prime. 

2 and 32 are eliminated for being even. Of the two odd choices, 17 is a prime number, having only 1 and 17 as factors. 39 has more than two factors (3 is a factor, since 39 divided by 3 yields quotient 13), so it is not prime. 39 is the correct choice.

Example Question #521 : Hspt Mathematics

A number of balls are placed in a box, each havng a letter on it. Each vowel is represented by three balls; each consonant, two. A ball is then drawn at random. What are the odds in favor of, or against, the ball having a vowel on it?

Note: for purposes of this problem, "Y" is considered a consonant.

Possible Answers:

14 to 5 against

3 to 2 in favor

21 to 5 against

63 to 10 in favor

Correct answer:

14 to 5 against

Explanation:

There are five vowels, each represented by three balls; the number of balls with vowels is 

.

There are twenty-one consonants, each represented by two balls; the number of balls with consonants is

.

The odds against drawing a vowel are therefore 

, or 14 to 5.

Example Question #54 : How To Do Other Word Problems

A number of balls are placed in a box, each havng a letter on it. Each vowel is represented by  balls; each consonant, one ball. A ball is then drawn at random. In terms of , give the probability that the ball will have an "E" on it.

Note: for purposes of this problem, "Y" is considered a consonant.

Possible Answers:

Correct answer:

Explanation:

There are five vowels, each represented by  balls, so there will be  balls with vowels; each of the twenty-one consonants will be represented by one ball, so the total number of balls is . Since there are  balls with an "E" on them, the probability of drawing one of these balls is .

 

Learning Tools by Varsity Tutors