All HSPT Math Resources
Example Questions
Example Question #4 : How To Find The Surface Area Of A Sphere
The area of a circle with radius 4 divided by the surface area of a sphere with radius 2 is equal to:
0.5
π
2
3
1
1
The surface area of a sphere is 4πr2. The area of a circle is πr2. 16/16 is equal to 1.
Example Question #3 : How To Find The Surface Area Of A Sphere
What is the ratio of the surface area of a cube to the surface area of a sphere inscribed within it?
π/3
6/π
2π
4/π
3/π
6/π
Let's call the radius of the sphere r. The formula for the surface area of a sphere (A) is given below:
A = 4πr2
Because the sphere is inscribed inside the cube, the diameter of the sphere is equal to the side length of the cube. Because the diameter is twice the length of the radius, the diameter of the sphere is 2r. This means that the side length of the cube is also 2r.
The surface area for a cube is given by the following formula, where s represents the length of each side of the cube:
surface area of cube = 6s2
The formula for surface area of a cube comes from the fact that each face of the cube has an area of s2, and there are 6 faces total on a cube.
Since we already determined that the side length of the cube is the same as 2r, we can replace s with 2r.
surface area of cube = 6(2r)2 = 6(2r)(2r) = 24r2.
We are asked to find the ratio of the surface area of the cube to the surface area of the sphere. This means we must divide the surface area of the cube by the surface area of the sphere.
ratio = (24r2)/(4πr2)
The r2 term cancels in the numerator and denominator. Also, 24/4 simplifes to 6.
ratio = (24r2)/(4πr2) = 6/π
The answer is 6/π.
Example Question #21 : How To Find Surface Area
What is the surface area of a hemisphere with a diameter of ?
A hemisphere is half of a sphere. The surface area is broken into two parts: the spherical part and the circular base.
The surface area of a sphere is given by .
So the surface area of the spherical part of a hemisphere is .
The area of the circular base is given by . The radius to use is half the diameter, or 2 cm.
Example Question #2111 : Hspt Mathematics
Find the surface area of a sphere with a radius of .
Write the surface area formula for a sphere.
Substitute the value of the radius.
Example Question #22 : How To Find Surface Area
Find the surface area of a cube with a side length of .
Write the formula for the surface area of a cube.
Substitute the length.
Example Question #23 : How To Find Surface Area
What is the surface area of a cube with a side length of three?
Write the formula for the surface area of a cube.
Substitute the side length into the equation.
Simplify the square inside the parentheses and multiply.
Example Question #24 : How To Find Surface Area
Find the surface area of a cube with side length .
To solve, simply use the following formula for the surface area of a cube.
Thus,
Example Question #25 : How To Find Surface Area
If a cube has an area of on one of its sides, what is the total surface area?
A cube has sides that have equal length edges and also equal side areas.
To find the total surface area, you just need to multiple the side area () by which is,
.
Example Question #26 : How To Find Surface Area
A sphere has diameter 12. What is 75% of its surface area?
The radius of a sphere is half its diameter, which here is 12, so the radius is 6. The surface area of the sphere can be calculated by setting in the formula:
75% of this is
Example Question #27 : How To Find Surface Area
Which expression is equal to 40% of the surface area of the above cylinder?
The surface area of the cylinder can be calculated by setting and in the formula
40% of this surface area is
Certified Tutor
Certified Tutor