HSPT Math : Arithmetic

Study concepts, example questions & explanations for HSPT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : How To Divide Fractions

\dpi{100} 9\div \frac{1}{7}=\(\displaystyle \dpi{100} 9\div \frac{1}{7}=\)

Possible Answers:

\dpi{100} 1\(\displaystyle \dpi{100} 1\)

\dpi{100} \frac{7}{9}\(\displaystyle \dpi{100} \frac{7}{9}\)

\dpi{100} \frac{9}{7}\(\displaystyle \dpi{100} \frac{9}{7}\)

\dpi{100} 63\(\displaystyle \dpi{100} 63\)

Correct answer:

\dpi{100} 63\(\displaystyle \dpi{100} 63\)

Explanation:

We never actually divide fractions.  When given a division problem, you multiply by the reciprocal of the 2nd fraction. 

So, \dpi{100} 9\div \frac{1}{7}\(\displaystyle \dpi{100} 9\div \frac{1}{7}\) becomes \dpi{100} 9\times \frac{7}{1}\(\displaystyle \dpi{100} 9\times \frac{7}{1}\).

This is the same as \dpi{100} 9\times7=63\(\displaystyle \dpi{100} 9\times7=63\)

Example Question #311 : Arithmetic

Divide: \(\displaystyle 0.17 \div 32\)

Possible Answers:

\(\displaystyle 0.01882\)

\(\displaystyle 0.053125\)

\(\displaystyle 0.001882\)

\(\displaystyle 0.0053125\)

\(\displaystyle 0.53125\)

Correct answer:

\(\displaystyle 0.0053125\)

Explanation:

Simply use the long division process. The quotient will be: 

\(\displaystyle 0.17 \div 32 = 0.0053125\)

Example Question #312 : Arithmetic

Solve:

\(\displaystyle \frac{3}{4}\div \frac{1}{3}\)

Possible Answers:

\(\displaystyle \frac{9}{4}\)

\(\displaystyle 4\)

\(\displaystyle \frac{4}{9}\)

\(\displaystyle \frac{1}{4}\)

Correct answer:

\(\displaystyle \frac{9}{4}\)

Explanation:

\(\displaystyle \frac{3}{4}\div\frac{1}{3}=\frac{3}{4}\times\frac{3}{1}=\frac{9}{4}\)

Example Question #313 : Arithmetic

Simplify: \(\displaystyle \frac{\frac{2}{7}}{\frac{9}{14}}\)

Possible Answers:

\(\displaystyle \frac{4}{9}\)

\(\displaystyle \frac{5}{14}\)

\(\displaystyle \frac{13}{14}\)

\(\displaystyle \frac{9}{49}\)

\(\displaystyle \frac{2}{9}\)

Correct answer:

\(\displaystyle \frac{4}{9}\)

Explanation:

Rewrite this as a division, dividing the numerator by the denominator:

\(\displaystyle \frac{\frac{2}{7}}{\frac{9}{14}} = \frac{2}{7} \div \frac{9}{14} = \frac{2}{7} \times \frac{14}{9}= \frac{2}{1} \times \frac{2}{9}=\frac{2 \times 2}{1 \times 9}= \frac{4}{9}\)

Example Question #314 : Arithmetic

Simplify: 

\(\displaystyle \frac{\frac{2}{5}}{\frac{7}{10}}\)

Possible Answers:

\(\displaystyle \frac{11}{10}\)

\(\displaystyle \frac{25}{7}\)

\(\displaystyle \frac{7}{25}\)

\(\displaystyle \frac{4}{7}\)

\(\displaystyle \frac{7}{4}\)

Correct answer:

\(\displaystyle \frac{4}{7}\)

Explanation:

Rewrite as a division, then solve:

\(\displaystyle \frac{\frac{2}{5}}{\frac{7}{10}} = \frac{2}{5} \div \frac{7}{10} = \frac{2}{5} \times \frac{10}{7} = \frac{2}{1} \times \frac{2}{7} = \frac{4}{7}\)

Example Question #11 : How To Divide Fractions

Simplify: 

\(\displaystyle \frac{ 2 \frac{1}{5}}{7 \frac{1}{3}}\)

Possible Answers:

\(\displaystyle \frac{1}{30}\)

\(\displaystyle \frac{4}{15}\)

\(\displaystyle 3\frac{1}{3}\)

\(\displaystyle \frac{3}{10}\)

\(\displaystyle 30\)

Correct answer:

\(\displaystyle \frac{3}{10}\)

Explanation:

Rewrite as a division, then solve:

\(\displaystyle \frac{ 2 \frac{1}{5}}{7 \frac{1}{3}}\)

\(\displaystyle = 2 \frac{1}{5} \div 7 \frac{1}{3}\)

\(\displaystyle = \frac{1+ 2 \times 5}{5} \div \frac{1+ 7 \times 3}{3}\)

\(\displaystyle = \frac{11}{5} \div \frac{22}{3}\)

\(\displaystyle = \frac{11}{5} \times \frac{3}{22}\)

\(\displaystyle = \frac{1}{5} \times \frac{3}{2} = \frac{1 \times 3}{5 \times 2} = \frac{3}{10}\)

Example Question #11 : How To Divide Fractions

Evaluate:

\(\displaystyle \sqrt{3}\div \frac{3}{4}\)

Possible Answers:

\(\displaystyle \frac{4}{3}\)

\(\displaystyle \sqrt{3}\)

\(\displaystyle \frac{4\sqrt{3}}{3}\)

\(\displaystyle \frac{3\sqrt{3}}{4}\)

\(\displaystyle 4\sqrt{3}\)

Correct answer:

\(\displaystyle \frac{4\sqrt{3}}{3}\)

Explanation:

To divide any number by a fraction, we can multiply that number by the reciprocal of the fraction. That means:

 

\(\displaystyle \frac{a}{b}\div \frac{c}{d} = \frac{a}{b}\times \frac{d}{c}=\frac{ad}{bc}\)

 

So we have:

 

\(\displaystyle \sqrt{3}\div \frac{3}{4}= \frac{\sqrt{3}}{1}\times \frac{4}{3}\)

\(\displaystyle =\frac{4\sqrt{3}}{3}\)

Example Question #315 : Arithmetic

Simplify:

\(\displaystyle \frac{2+\frac{5}{6}}{2-\frac{5}{6}}\)

Possible Answers:

\(\displaystyle \frac{17}{7}\)

\(\displaystyle \frac{17}{6}\)

\(\displaystyle \frac{7}{17}\)

\(\displaystyle 1\)

\(\displaystyle \frac{5}{6}\)

Correct answer:

\(\displaystyle \frac{17}{7}\)

Explanation:

Multiply each term by 6:

 

\(\displaystyle \frac{2+\frac{5}{6}}{2-\frac{5}{6}} = \frac{12+5}{12-5}\)

\(\displaystyle =\frac{17}{7}\)

Example Question #12 : How To Divide Fractions

Evaluate:

\(\displaystyle 8\frac{1}{3}\div \frac{1}{6}\)

Possible Answers:

\(\displaystyle 48\)

\(\displaystyle \frac{50}{3}\)

\(\displaystyle 50\)

\(\displaystyle \frac{50}{6}\)

Correct answer:

\(\displaystyle 50\)

Explanation:

A mixed number represents the sum of an integer and a fraction. In order to evaluate this problem first we need to change the mixed number ( \(\displaystyle 8\frac{1}{3}\)) to an improper fraction. Improper fractions are fractions whose numerator is greater than the denominator. So we can write:

 

\(\displaystyle 8\frac{1}{3}=\frac{8\times 3+1}{3}=\frac{25}{3}\)

 

Now we should evaluate   \(\displaystyle \frac{25}{3}\div \frac{1}{6}\) and we have:

 

\(\displaystyle \frac{25}{3}\div \frac{1}{6}=\frac{25}{3}\times \frac{6}{1}=50\)

Example Question #13 : How To Divide Fractions

Simplify:

\(\displaystyle \frac{\frac{4}{x}}{(\frac{1}{x}-4x)}\)

Possible Answers:

\(\displaystyle \frac{1}{(1-x^2)}\)

\(\displaystyle \frac{1}{(1+4x^2)}\)

\(\displaystyle \frac{1}{(1-4x^2)}\)

\(\displaystyle \frac{4}{(1+4x^2)}\)

\(\displaystyle \frac{4}{(1-4x^2)}\)

Correct answer:

\(\displaystyle \frac{4}{(1-4x^2)}\)

Explanation:

We can first find a common denominator for the expression in the numerator, which is \(\displaystyle x\). This gives us:

 

\(\displaystyle \frac{\frac{4}{x}}{\left(\frac{1}{x}-\frac{4x^2}{x}\right)}=\frac{\frac{4}{x}}{\left(\frac{1-4x^2}{x}\right)}\)

\(\displaystyle =\frac{4}{x}\times \left(\frac{x}{1-4x^2}\right)\)

\(\displaystyle =\frac{4}{(1-4x^2)}\)

Learning Tools by Varsity Tutors