All High School Math Resources
Example Questions
Example Question #3 : How To Find The Area Of A Square
If the diagonal of a square measures , what is the area of the square?
This is an isosceles right triangle, so the diagonal must equal times the length of a side. Thus, one side of the square measures , and the area is equal to
Example Question #4 : How To Find The Area Of A Square
A square has side lengths of . A second square has side lengths of . How many can you fit in a single ?
The area of is , the area of is . Therefore, you can fit 5.06 in .
Example Question #5 : How To Find The Area Of A Square
The perimeter of a square is If the square is enlarged by a factor of three, what is the new area?
The perimeter of a square is given by so the side length of the original square is The side of the new square is enlarged by a factor of 3 to give
So the area of the new square is given by .
Example Question #4 : How To Find The Area Of A Square
How much more area does a square with a side of 2r have than a circle with a radius r? Approximate π by using 22/7.
1/7 square units
4/7 square units
6/7 square units
12/14 square units
6/7 square units
The area of a circle is given by A = πr2 or 22/7r2
The area of a square is given by A = s2 or (2r)2 = 4r2
Then subtract the area of the circle from the area of the square and get 6/7 square units.
Example Question #34 : Squares
If the perimeter of a square is 44 centimeters, what is the area of the square in square centimeters?
Since the square's perimeter is 44, then each side is .
Then in order to find the area, use the definition that the
Example Question #4 : How To Find The Area Of A Square
Given square , with midpoints on each side connected to form a new, smaller square. How many times bigger is the area of the larger square than the smaller square?
Assume that the length of each midpoint is 1. This means that the length of each side of the large square is 2, so the area of the larger square is 4 square units.
To find the area of the smaller square, first find the length of each side. Because the length of each midpoint is 1, each side of the smaller square is (use either the Pythagorean Theorem or notice that these right trianges are isoceles right trianges, so can be used).
The area then of the smaller square is 2 square units.
Comparing the area of the two squares, the larger square is 2 times larger than the smaller square.
Example Question #11 : How To Find The Area Of A Square
Find the area of a square with a diagonal of .
Not enough information to solve
A few facts need to be known to solve this problem. Observe that the diagonal of the square cuts it into two right isosceles triangles; therefore, the length of a side of the square to its diagonal is the same as an isosceles right triangle's leg to its hypotenuse: .
Rearrange an solve for .
Now, solve for the area using the formula .
Example Question #11 : Squares
If the ratio of the sides of two squares is , what is the ratio of the areas of those two squares?
Express the ratio of the two sides of the squares as . The area of each square is one side multiplied by itself, so the ratios of the areas would be . The right side of this equation simplifies to a ratio of .
Example Question #92 : Quadrilaterals
If a completely fenced-in square-shaped yard requires 140 feet of fence, what is the area, in square feet, of the lot?
35
70
4900
140
1225
1225
Since the yard is square in shape, we can divide the perimeter(140ft) by 4, giving us 35ft for each side. We then square 35 to give us the area, 1225 feet.
Example Question #251 : Plane Geometry
What is the area of a square with a diagonal of ?
The formula for the area of a square is . However, the problem gives us a diagonal and not a side.
Remember that all sides of a square are equal, so the diagonal cuts the square into two equal triangles, each a right triangle.
If we use the Pythagorean Theorem, we see:
Plug in our given diagonal to solve.
From here we can plug our answer back into our original equation: