High School Math : Quadratic Equations and Inequalities

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Understanding Quadratic Equations

Solve the equation for \displaystyle x.

\displaystyle \small \frac{1}{x}=\frac{x+1}{6}

Possible Answers:

\displaystyle \small x=-3\ or\ -2

\displaystyle \small x=3\ or\ 2

\displaystyle \small x=3\ or\ -2

\displaystyle \small x=-3\ or\ 2

Correct answer:

\displaystyle \small x=-3\ or\ 2

Explanation:

\displaystyle \small \small \frac{1}{x}=\frac{x+1}{6}

Cross multiply.

\displaystyle \small 6=x(x+1)

\displaystyle \small 6=x^2+x

Set the equation equal to zero.

\displaystyle \small 0=x^2+x-6

Factor to find the roots of the polynomial.

\displaystyle 3*-2=-6 and \displaystyle 3+(-2)=1

\displaystyle \small 0=(x+3)(x-2)

\displaystyle \small 0=x+3; x=-3

\displaystyle \small 0=x-2; x=2

Example Question #1 : Foil

Evaluate \displaystyle (2x+3)^{2}

Possible Answers:

\displaystyle 4x^{2}+12x+9

Correct answer:

\displaystyle 4x^{2}+12x+9

Explanation:

In order to evaluate \displaystyle (2x+3)^{2} one needs to multiply the expression by itself using the laws of FOIL.  In the foil method, one multiplies in the following order: first terms, outer terms, inner terms, and last terms.

Multiply terms by way of FOIL method.

\displaystyle =(2x*2x)+(2x*3)+(3*2x)+(3*3)

Now multiply and simplify.

\displaystyle =4x^{2}+6x+6x+9

\displaystyle \rightarrow 4x^{2}+12x+9

Example Question #11 : Quadratic Equations And Inequalities

Expand \displaystyle (x+7)(x-2).

Possible Answers:

\displaystyle x^2+9

\displaystyle x^2-5x-14

\displaystyle x^2-14x+5

\displaystyle x^2+7x-2x-7

\displaystyle x^2+5x-14

Correct answer:

\displaystyle x^2+5x-14

Explanation:

To solve our given equation, we need to use FOIL (First, Outer, Inner, Last).

\displaystyle (x+7)(x-2)=x^2-2x+7x-14

Combine like terms.

\displaystyle (x+7)(x-2)=x^2+5x-14

Example Question #12 : Quadratic Equations And Inequalities

FOIL \displaystyle (x+1)(x-3).

Possible Answers:

\displaystyle x^2+2x-\frac{2}{3}

\displaystyle x^2+3x+4

\displaystyle x^2+2x-\frac{1}{3}

\displaystyle x^2-4x-3

\displaystyle x^2-2x-3

Correct answer:

\displaystyle x^2-2x-3

Explanation:

Remember FOIL stands for First Outer Inner Last.

\displaystyle (x+1)(x-3)=x^2+1x-3x-3

Combine like terms to get \displaystyle x^2-2x-3.

Example Question #43 : Intermediate Single Variable Algebra

Use the discriminant to determine the nature of the roots:

\displaystyle 4x^2-40x+25=0

Possible Answers:

\displaystyle 2 rational roots

\displaystyle 1 imaginary root

\displaystyle 2 imaginary roots

\displaystyle 2 irrational roots

\displaystyle 1 rational root

Correct answer:

\displaystyle 2 irrational roots

Explanation:

The formula for the discriminant is:

\displaystyle b^2 - 4ac

\displaystyle =(-40)^2 - 4(4)(25)

\displaystyle =1200^{}

Since the discriminant is positive and not a perfect square, there are \displaystyle 2 irrational roots.

Example Question #12 : Quadratic Equations And Inequalities

Use the discriminant to determine the nature of the roots:

\displaystyle 2y^2+6y+5=0

Possible Answers:

\displaystyle 1 rational root

\displaystyle 1 imaginary root

\displaystyle 2 imaginary roots

\displaystyle 2 irrational roots

\displaystyle 2 rational roots

Correct answer:

\displaystyle 2 imaginary roots

Explanation:

The formula for the discriminant is:

\displaystyle b^2 - 4ac

\displaystyle =(6)^2 - 4(2)(5)

\displaystyle =-4

Since the discriminant is negative, there are \displaystyle 2 imaginary roots.

Example Question #1 : Understanding The Discriminant

Use the discriminant to determine the nature of the roots:

\displaystyle 4x^2-8x+13=0

Possible Answers:

\displaystyle 1 imaginary root

Cannot be determined

\displaystyle 2 real roots

\displaystyle 1 real root

\displaystyle 2 imaginary roots

Correct answer:

\displaystyle 2 imaginary roots

Explanation:

The formula for the discriminant is:

\displaystyle b^2 - 4ac

\displaystyle =(-8)^2 - 4(4)(13)

\displaystyle =-144 

Since the discriminant is negative, there are \displaystyle 2 imaginary roots.

Example Question #1 : Discriminants

Given \displaystyle 2x^{2}+3x-5=0 , what is the value of the discriminant?

Possible Answers:

\displaystyle 40

\displaystyle 27

\displaystyle 49

\displaystyle 7

\displaystyle -31

Correct answer:

\displaystyle 49

Explanation:

In general, the discriminant is \displaystyle b^{2}-4ac.

In this particual case \displaystyle a=2, b=3\; and\; c=-5.

Plug in these three values and simplify: \displaystyle (3)^{2}-4(2)(-5)= 49

Example Question #1 : Understanding Quadratic Roots

Write an equation with the given roots:

\displaystyle \frac{3}{4}, \frac{1}{3}

Possible Answers:

\displaystyle 13x^2-12x+3=0

\displaystyle 14x^2-13x+3=0

\displaystyle 13x^2-12x+2=0

\displaystyle 12x^2-13x+3=0

\displaystyle 13x^2-13x+3=0

Correct answer:

\displaystyle 12x^2-13x+3=0

Explanation:

To write an equation, find the sum and product of the roots. The sum is the negative coefficient of \displaystyle x, and the product is the integer.

Sum: \displaystyle (\frac{3}{4})+(\frac{1}{3})=\frac{13}{12}

Product: \displaystyle (\frac{3}{4})\cdot (\frac{1}{3})=\frac{1}{4}

Subtract the sum and add the product.

The equation is:

\displaystyle x^2 - \frac{13}{12}x+\frac{1}{4}=0

Multiply the equation by \displaystyle 12:

\displaystyle 12x^2+-13x+3=0

Example Question #52 : Intermediate Single Variable Algebra

Write an equation with the given roots:

\displaystyle 2 \pm \sqrt{3}

Possible Answers:

\displaystyle x^2-4x+1=0

\displaystyle x^2-3x+1=0

\displaystyle x^2-3x+2=0

\displaystyle x^2-2x+2=0

\displaystyle x^2-4x+2=0

Correct answer:

\displaystyle x^2-4x+1=0

Explanation:

To write an equation, find the sum and product of the roots. The sum is the negative coefficient of \displaystyle x, and the product is the integer.

Sum: \displaystyle (2 + \sqrt{3})+(2 - \sqrt{3})=4

Product: \displaystyle (2 + \sqrt{3})\cdot (2 - \sqrt{3})=4-3=1

Subtract the sum and add the product.

The equation is:

\displaystyle x^2 -4x+1=0

Learning Tools by Varsity Tutors