High School Math : How to solve one-step equations with integers in pre-algebra

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #342 : High School Math

\displaystyle x+15=6

Solve for \displaystyle x.

Possible Answers:

\displaystyle -9

\displaystyle -21

\displaystyle 21

\displaystyle \frac{2}{5}

\displaystyle 9

Correct answer:

\displaystyle -9

Explanation:

To solve \displaystyle x+15=6, we need to subtract \displaystyle 15 from both sides.

\displaystyle x+15-15=6-15

\displaystyle x=6-15

\displaystyle x=-9

Example Question #343 : High School Math

\displaystyle x+5=34

Solve for \displaystyle x.

Possible Answers:

\displaystyle 29

\displaystyle \frac{34}{5}

\displaystyle 39

\displaystyle 170

\displaystyle 24

Correct answer:

\displaystyle 29

Explanation:

To solve \displaystyle x+5=34, subtract \displaystyle 5 from both sides.

\displaystyle x+5-5=34-5

\displaystyle x=34-5

\displaystyle x=29

Example Question #344 : High School Math

Solve for  when \displaystyle x+9=32

Possible Answers:

\displaystyle x=23

\displaystyle x=21

\displaystyle x=41

\displaystyle x=39

Correct answer:

\displaystyle x=23

Explanation:

To solve for , subtract \displaystyle 9 from both sides of the equation:

\displaystyle x+9-9=32-9

\displaystyle x=32-9

\displaystyle x=23

Example Question #345 : High School Math

Solve for  when \displaystyle \frac{x}{16}=4

Possible Answers:

\displaystyle x=4

\displaystyle x=64

\displaystyle x=48

\displaystyle x=8

Correct answer:

\displaystyle x=64

Explanation:

To solve for , multiply both sides of the equation by \displaystyle 16:

\displaystyle \frac{x}{16}\cdot 16=4\cdot 16

\displaystyle x=4\cdot 16

\displaystyle x=64

Example Question #346 : High School Math

Solve for  when \displaystyle x-18=72

Possible Answers:

\displaystyle x=80

\displaystyle x=54

\displaystyle x=75

\displaystyle x=90

Correct answer:

\displaystyle x=90

Explanation:

To solve for , add \displaystyle 18 to both sides of the equation:

\displaystyle x-18+18=72+18

\displaystyle x=72+18

\displaystyle x=90

Example Question #347 : High School Math

Solve for  when \displaystyle 12x=156

Possible Answers:

\displaystyle x=13

\displaystyle x=3124

\displaystyle x=181

\displaystyle x=81

Correct answer:

\displaystyle x=13

Explanation:

To solve for , divide each side of the equation by \displaystyle 12:

\displaystyle \frac{12x}{12}=\frac{156}{12}

\displaystyle x=\frac{156}{12}

\displaystyle x=13

Example Question #197 : Pre Algebra

Solve for  when \displaystyle 5x=90

Possible Answers:

\displaystyle x=35

\displaystyle x=15

\displaystyle x=18

\displaystyle x=80

Correct answer:

\displaystyle x=18

Explanation:

To solve for ,  divide both sides of the equation by \displaystyle 5:

\displaystyle \frac{5x}{5}=\frac{90}{5}

\displaystyle x=18

Example Question #351 : High School Math

Solve for  when \displaystyle x-918=1332

Possible Answers:

\displaystyle x=2250

\displaystyle x=2575

\displaystyle x=1275

\displaystyle x=289

Correct answer:

\displaystyle x=2250

Explanation:

To solve for , add \displaystyle 918 to both sides of the equation:

\displaystyle x-918+918=1332+918

\displaystyle x=2250

Example Question #201 : Pre Algebra

Solve for  when \displaystyle \frac{x}{7}=9

Possible Answers:

\displaystyle x=\frac{9}{7}

\displaystyle x=54

\displaystyle x=9

\displaystyle x=63

Correct answer:

\displaystyle x=63

Explanation:

To solve for , multiply both sides of the equation by \displaystyle 7:

\displaystyle \frac{x}{7}\cdot 7=9\cdot 7

\displaystyle x=9\cdot 7

\displaystyle x=63

Example Question #101 : Algebraic Equations

Solve for  when \displaystyle x+15=97

Possible Answers:

\displaystyle x=78

\displaystyle x=82

\displaystyle x=102

\displaystyle x=86

Correct answer:

\displaystyle x=82

Explanation:

To solve for , subtract \displaystyle 15 from each side of the equation:

\displaystyle x+15-15=97-15

\displaystyle x=97-15

\displaystyle x=82

Learning Tools by Varsity Tutors