All High School Math Resources
Example Questions
Example Question #91 : Right Triangles
Square is on the coordinate plane, and each side of the square is parallel to either the -axis or -axis. Point has coordinates and point has the coordinates .
Quantity A:
Quantity B: The distance between points and
The two quantities are equal.
Quantity B is greater.
The relationship cannot be determined from the information provided.
Quantity A is greater.
The two quantities are equal.
To find the distance between points and , split the square into two 45-45-90 triangles and find the hypotenuse. The side ratio of the 45-45-90 triangle is , so if the sides have a length of 5, the hypotenuse must be .
Example Question #513 : Geometry
Justin travels to the east and to the north. How far away from his starting point is he now?
This is solving for the hypotenuse of a triangle. Using the Pythagorean Theorem, which says that
Example Question #52 : How To Find The Length Of The Hypotenuse Of A Right Triangle : Pythagorean Theorem
Susie walks north from her house to a park that is 30 meters away. Once she arrives at the park, she turns and walks west for 80 meters to a bench to feed some pigeons. She then walks north for another 30 meters to a concession stand. If Susie returns home in a straight line from the concession stand, how far will she walk from the concession stand to her house, in meters?
100
50
200
70
25
100
Susie walks 30 meters north, then 80 meters west, then 30 meters north again. Thus, she walks 60 meters north and 80 meters west. These two directions are 90 degrees away from one another.
At this point, construct a right triangle with one leg that measures 60 meters and a second leg that is 80 meters.
You can save time by using the 3:4:5 common triangle. 60 and 80 are and , respectively, making the hypotenuse equal to .
We can solve for the length of the missing hypotenuse by applying the Pythagorean theorem:
Substitute the following known values into the formula and solve for the missing hypotenuse: side .
Susie will walk 100 meters to reach her house.
Example Question #72 : Triangles
The lengths of the sides of a triangle are consecutive odd numbers and the triangle's perimeter is 57 centimeters. What is the length, in centimeters, of its longest side?
19
17
25
21
23
21
First, define the sides of the triangle. Because the side lengths are consecutive odd numbers, if we define the shortest side will be as , the next side will be defined as , and the longest side will be defined as . We can then find the perimeter of a triangle using the following formula:
Substitute in the known values and variables.
Subtract 6 from both sides of the equation.
Divide both sides of the equation by 3.
Solve.
This is not the answer; we need to find the length of the longest side, or .
Substitute in the calculated value for and solve.
The longest side of the triangle is 21 centimeters long.
Example Question #53 : How To Find The Length Of The Hypotenuse Of A Right Triangle : Pythagorean Theorem
Each of the following answer choices lists the side lengths of a different triangle. Which of these triangles does not have a right angle?
cannot be the side lengths of a right triangle. does not equal . Also, special right triangle and rules can eliminate all the other choices.
Example Question #441 : Geometry
What is the perimeter of a triangle with side lengths of 5, 12, and 13?
To find the perimeter of a triangle you must add all of the side lengths together.
In this case our equation would look like
Add the numbers together to get the answer .
Example Question #12 : Triangles
Three points in the xy-coordinate system form a triangle.
The points are .
What is the perimeter of the triangle?
Drawing points gives sides of a right triangle of 4, 5, and an unknown hypotenuse.
Using the pythagorean theorem we find that the hypotenuse is .
Example Question #2 : How To Find The Perimeter Of A Right Triangle
Find the perimeter of the following triangle:
The formula for the perimeter of a right triangle is:
where is the length of a side.
Use the formulas for a a triangle to find the length of the base. The formula for a triangle is .
Our triangle is:
Plugging in our values, we get:
Example Question #3 : How To Find The Perimeter Of A Right Triangle
Find the perimeter of the following right triangle:
The formula for the perimeter of a right triangle is:
where is the length of a side.
Use the formulas for a triangle to find the length of the base and height. The formula for a triangle is
Our triangle is:
Plugging in our values, we get:
Example Question #443 : Psat Mathematics
Based on the information given above, what is the perimeter of triangle ABC?
Consult the diagram above while reading the solution. Because of what we know about supplementary angles, we can fill in the inner values of the triangle. Angles A and B can be found by the following reductions:
A + 120 = 180; A = 60
B + 150 = 180; B = 30
Since we know A + B + C = 180 and have the values of A and B, we know:
60 + 30 + C = 180; C = 90
This gives us a 30:60:90 triangle. Now, since 17.5 is across from the 30° angle, we know that the other two sides will have to be √3 and 2 times 17.5; therefore, our perimeter will be as follows: