High School Math : Applying the Law of Cosines

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Law Of Cosines

In \(\displaystyle \Delta ABC\)\(\displaystyle AB = 26\), \(\displaystyle BC = 32\), and \(\displaystyle AC = 23\). To the nearest tenth, what is \(\displaystyle m \angle A\) ?

Possible Answers:

\(\displaystyle 171.3^{ \circ }\)

\(\displaystyle 81.3 ^{\circ }\)

\(\displaystyle 98.7^{ \circ }\)

A triangle with these sidelengths cannot exist.

\(\displaystyle 81.3 ^{\circ }\textrm{ or } 98.7^{ \circ }\)

Correct answer:

\(\displaystyle 81.3 ^{\circ }\)

Explanation:

By the Triangle Inequality, this triangle can exist, since \(\displaystyle 23 + 26 > 32\).

By the Law of Cosines:

\(\displaystyle \left ( BC\right )^{2} = \left ( AB\right )^{2} + \left ( AC\right )^{2} - 2 \cdot AB \cdot AC \cdot \cos m \angle A\)

Substitute the sidelengths and solve for \(\displaystyle \cos m \angle A\) :

\(\displaystyle 32^{2} = 26^{2} + 23^{2} - 2\cdot 26 \cdot 23 \cdot \cos m \angle A\)

\(\displaystyle 1,024 =676 + 529 - 1,196 \cdot \cos m \angle A\)

\(\displaystyle 1,024 =1,205 - 1,196 \cdot \cos m \angle A\)

\(\displaystyle -181 = - 1,196 \cdot \cos m \angle A\)

\(\displaystyle \cos m \angle A = 181 \div 1,196 \approx 0.1513\)

\(\displaystyle m \angle A \approx \cos^{-1} 0.1513 \approx 81.3 ^{\circ }\)

Example Question #4 : Triangles

A triangle has sides of length 12, 17, and 22. Of the measures of the three interior angles, which is the greatest of the three?

Possible Answers:

\(\displaystyle 130.1^{\circ }\)

\(\displaystyle 97.2^{\circ }\)

\(\displaystyle 119.2^{\circ }\)

\(\displaystyle 93.6^{\circ }\)

\(\displaystyle 86.4^{\circ }\)

Correct answer:

\(\displaystyle 97.2^{\circ }\)

Explanation:

We can apply the Law of Cosines to find the measure of this angle, which we will call :

\(\displaystyle c^{2} = a^{2} + b^{2} -2ab \cos C\)

 

The widest angle will be opposite the side of length 22, so we will set:

\(\displaystyle c=22\)\(\displaystyle a=12\)\(\displaystyle b=17\)

 

\(\displaystyle 22^{2} = 12^{2} + 17^{2} -2\cdot 12\cdot 17 \cos C\)

\(\displaystyle 484 = 144 + 289 -408 \cos C\)

\(\displaystyle 51= -408 \cos C\)

\(\displaystyle \cos C = -\frac{51}{408} = -0.125\)

\(\displaystyle C = \cos^{-1} 0.125 = 97.2^{\circ }\)

 

Example Question #2 : Triangles

In \(\displaystyle \Delta ABC\)\(\displaystyle m \angle A = 66^{\circ }\) , \(\displaystyle AB = 26\), and \(\displaystyle AC = 23\). To the nearest tenth, what is \(\displaystyle BC\)?

Possible Answers:

A triangle with these characteristics cannot exist.

\(\displaystyle 41.1\)

\(\displaystyle 26.8\)

\(\displaystyle 47.9\)

\(\displaystyle 112.4\)

Correct answer:

\(\displaystyle 26.8\)

Explanation:

By the Law of Cosines:

\(\displaystyle \left ( BC\right )^{2} = \left ( AB\right )^{2} + \left ( AC\right )^{2} - 2 \cdot AB \cdot AC \cdot \cos m \angle A\)

or, equivalently,

\(\displaystyle BC =\sqrt{ \left ( AB\right )^{2} + \left ( AC\right )^{2} - 2 \cdot AB \cdot AC \cdot \cos m \angle A}\)

Substitute:

\(\displaystyle BC =\sqrt{ 26^{2} +23^{2} - 2 \cdot 26 \cdot 23 \cdot \cos 66 ^{\circ }}\)

\(\displaystyle \approx \sqrt{ 676 +529 - 1,196 \cdot 0.4067}\)

\(\displaystyle \approx \sqrt{ 718.6} \approx 26.8\)

Learning Tools by Varsity Tutors