High School Chemistry : Chemical Reactions

Study concepts, example questions & explanations for High School Chemistry

varsity tutors app store varsity tutors android store

Example Questions

1 2 3 4 5 7 Next →

Example Question #21 : Balancing Chemical Equations

Balance the following equation:

Possible Answers:

Correct answer:

Explanation:

When balancing a chemical equation, it means that we are adjusting the coefficients in front of every compound so that the number of atoms for every element will match how many will be on the other side of the arrow.

Initially, we must take "inventory" of how many atoms of each element we have on both sides of the arrow.

On the left side:

1 potassium, 5 oxygen, 4 hydrogen, 1 P

On the right side:

3 potassium, 5 oxygen, 2 hydrogen, 1 P

Since there are quite a few components in this example, all of which need balancing, we just need to choose one element to start with and continue from there. Let's look at potassium. Since there is only one potassium atom on the left side, and 3 on the right side, let's think about what the lowest common multiple between 1 and 3 is - we can quickly decide that it is 3. This means we may place a 3 coefficient in front of the  on the left side of the arrow. (The coefficient is multiplied by the subscript of the atom - in this case, 3 multiplies by 1.)

Adding the 3 coefficient in front of  changes how many oxygen and hydrogen atoms we have on the left side to 7 oxygen atoms and  6 hydrogen atoms. Comparing to the right side, which has 5 oxygen atoms and 2 hydrogen atoms. Since balancing the oxygen atoms on both sides is slightly more complicated because oxygen appears in two compounds, we will not manipulate their numbers but let their numbers become balanced through balancing the atoms around them. So let's turn our attention to the hydrogen atoms. If we have 6 hydrogen atoms on the left side, and 2 hydrogen atoms on the right (in one compound), we can come to terms with 6 being the lowest common multiple for 6 and 2. This means we need to place a 3 coefficient in front of  on the right side. 

This brings our total of oxygen atoms on the right side to 7 as well. So we have indirectly balanced the oxygen atoms. Since the only element left to balance is phosphorus, we realize that phosphorus on both sides is already balanced. We have balanced our equation. 

Now let's do one last tally to make sure we've balanced everything.

On the left:

3 potassium, 7 oxygen, 6 hydrogen, 1 phosphorus

On the right:

3 potassium, 7 oxygen, 6 hydrogen, 1 phosphorus

The equation has been balanced.

1 2 3 4 5 7 Next →
Learning Tools by Varsity Tutors