GRE Subject Test: Math : GRE Subject Test: Math

Study concepts, example questions & explanations for GRE Subject Test: Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #321 : Gre Subject Test: Math

Find one possible value of \displaystyle t, given the following equation:

\displaystyle 343=7^{15t-12}

Possible Answers:

Cannot be determined from the information given.

\displaystyle t=0

\displaystyle t=-3

\displaystyle t=5

\displaystyle t=1

Correct answer:

\displaystyle t=1

Explanation:

We begin with the following:

\displaystyle 343=7^{15t-12}

This can be rewritten as

\displaystyle 7^3=7^{15t-12}

Recall that if you have two exponents with equal bases, you can simply set the exponents equal to eachother. Do so to get the following:

\displaystyle 3=15t-12

Solve this to get t.

\displaystyle 15=15t

\displaystyle t=1

Example Question #322 : Gre Subject Test: Math

Solve for \displaystyle x.

\displaystyle 4^{2x}=16^{2x-6}

Possible Answers:

\displaystyle x=4

\displaystyle x=6

\displaystyle x=-6

\displaystyle x=log \ 2

Correct answer:

\displaystyle x=6

Explanation:

We need to make the bases equal before attempting to solve for \displaystyle x. Since \displaystyle 16=4^2 we can rewrite our equation as

\displaystyle 4^{2x}=4^{2^{2x-6}}

    Remember: the exponent rule \displaystyle (x^n)^m=x^{n\cdot m}

\displaystyle 4^{2x}=4^{2(2x-6)}

Now that our bases are equal, we can set the exponents equal to each other and solve for \displaystyle x

\displaystyle 2x=2(2x-6)

\displaystyle 2x=4x-12

\displaystyle 12=2x

\displaystyle x=6

 

Example Question #323 : Gre Subject Test: Math

Solve for \displaystyle y

\displaystyle 7^{2y}-3^{y+2}=0

Possible Answers:

\displaystyle y=-1

\displaystyle y=1

\displaystyle y=\frac{2\ln3}{2 \ln 7-\ln3}

\displaystyle y=\frac{2\ln3}{2 \ln 7+\ln3}

Correct answer:

\displaystyle y=\frac{2\ln3}{2 \ln 7-\ln3}

Explanation:

The first step is to make sure we don't have a zero on one side which we can easily take care of: 

\displaystyle 7^{2y}=3^{y+2}

Now we can take the logarithm of both sides using natural log:

\displaystyle \ln 7^{2y}=\ln 3^{y+2}

Note: we can apply the Power Rule here \displaystyle \ln (x^y)=y\ln (x)

\displaystyle 2y \ln 7=(y+2)\ln3

\displaystyle 2y \ln 7=y\ln3+2\ln3

\displaystyle 2y \ln 7-y\ln3=2\ln3

\displaystyle y(2 \ln 7-\ln3)=2\ln3

\displaystyle y=\frac{2\ln3}{2 \ln 7-\ln3}

Example Question #324 : Gre Subject Test: Math

Solve for \displaystyle x

\displaystyle 3e^{(4x-5)}=24

Possible Answers:

\displaystyle x=\frac{\ln8+5}{4}

\displaystyle x=\frac{\ln21+5}{4}

\displaystyle x=\frac{\ln8-5}{4}

Correct answer:

\displaystyle x=\frac{\ln8+5}{4}

Explanation:

Before beginning to solve for \displaystyle x, we need \displaystyle e to have a coefficient of \displaystyle 1

\displaystyle e^{(4x-5)}=8

Now we can take the natural log of both sides:

\displaystyle \ln e^{(4x-5)}=\ln8

Note: \displaystyle \ln (e)=1

\displaystyle 4x-5=\ln8

\displaystyle 4x=\ln8+5

\displaystyle x=\frac{\ln8+5}{4}

Example Question #325 : Gre Subject Test: Math

\displaystyle 6^{3}\times6^{n} =6^{12}

Possible Answers:

\displaystyle n =9

\displaystyle n =15

\displaystyle n=4

\displaystyle n=36

Correct answer:

\displaystyle n =9

Explanation:

\displaystyle 6^{3} \times 6^{n} =6^{12}

Since the base is \displaystyle 6 for both, then:


\displaystyle 3 + n =12  When the base is the same, and you are multiplying, the exponents are added.

\displaystyle n= 9

 

Example Question #2 : Solving Exponential Equations

\displaystyle 10^{3x} = 63

Possible Answers:

\displaystyle x = 63/3

\displaystyle x = \frac{log(63)}{3}

\displaystyle x = log (63)

\displaystyle x = \frac{log (3)}{63}

Correct answer:

\displaystyle x = \frac{log(63)}{3}

Explanation:

\displaystyle 10^{3x} = 63

To solve, use common \displaystyle \log

\displaystyle \log (10^{3x}) = \log (63)

\displaystyle 3x\log (10) = \log (63)

\displaystyle 3x (1) = \log (63)

\displaystyle 3x = \log (63)

\displaystyle x = \frac{\log (63)}{3}

Example Question #141 : Classifying Algebraic Functions

\displaystyle 2^{x} = 40

Possible Answers:

\displaystyle x = \ln (40)

\displaystyle x = \frac{\\ln ( 40)}{\\ln (2)}

\displaystyle x =\frac{\\ln (20)}{\\ln (2)}

\displaystyle x = \frac{\\ln (2) }{\\ ln(40) }

Correct answer:

\displaystyle x = \frac{\\ln ( 40)}{\\ln (2)}

Explanation:

\displaystyle 2^{x} = 40

To solve, use the natural log.

\displaystyle ln (2^{x}) = ln (40)

\displaystyle xln (2) = ln(40)

To isolate the variable, divide both sides by \displaystyle ln (2).

\displaystyle x = \frac{\\ln (40)}{\\ln (2)}

Example Question #8 : Solving Exponential Equations

\displaystyle 4^{x} = 200

Possible Answers:

\displaystyle x =\frac{1}{5\\ln }

\displaystyle x = \frac{\\ln (4)}{\\ln (200) }

\displaystyle x =\frac{\\ln (200)}{\\ln (4) }

\displaystyle x = 50

Correct answer:

\displaystyle x =\frac{\\ln (200)}{\\ln (4) }

Explanation:

\displaystyle 4^{x} = 200

To solve, use the natural log.

\displaystyle \\ln (4^{x}) = \ln(200)

\displaystyle x\ln (4) = \ln (200)

\displaystyle x = \ln (200)

\displaystyle x = \frac{ln(200)}{ln (4)}

Example Question #3 : Solving Exponential Equations

Solve the equation.  Express the solution as a logarithm in base-10.

\displaystyle -2\times 10^{3x} = - 500

Possible Answers:

\displaystyle x =\frac{\log500 }{3}

\displaystyle x = \frac{\log 3}{250}

\displaystyle x=\frac{\log (250)}{3}

\displaystyle x = \log (250)

Correct answer:

\displaystyle x=\frac{\log (250)}{3}

Explanation:

\displaystyle -2 (10^{3x}) = -500

Isolate the exponential part of the equation.

\displaystyle \frac{-2 (10^{3x})}{-2} = \frac{-500}{-2}

\displaystyle 10^{3x} = 250

Convert to log form and solve.

\displaystyle \log_{10} (250) = 3x

\displaystyle \log_{10} (250) can also be written as \displaystyle \log 250.

\displaystyle \frac{\log (250) }{3} = x 

Example Question #142 : Algebra

\displaystyle 8\times e^{0.3x} = 12

Possible Answers:

\displaystyle \frac{\\ln (12)}{0.3} = x

\displaystyle \frac{\\ln 0.3}{12} = x

\displaystyle \frac{\\ln (1.5)}{0.3} = x

\displaystyle \frac{\\ln (8)}{0.3} = x

Correct answer:

\displaystyle \frac{\\ln (1.5)}{0.3} = x

Explanation:

\displaystyle 8\times e^{0.3x} = 12

Simply the exponential part of the equation by dividing both sides by\displaystyle 8.

\displaystyle e^{0.3x} = \frac{12}{8}

\displaystyle e^{0.3x} = 1.5

Write in logarithm form.

\displaystyle \log_{e} (1.5) = 0.3x

Because \displaystyle \log_{e} (1.5) is also written as \displaystyle \\ln 1.5

\displaystyle \frac{\\ln 1.5}{0.3} = x

Learning Tools by Varsity Tutors