GRE Subject Test: Math : Sequences & Series

Study concepts, example questions & explanations for GRE Subject Test: Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Convergence And Divergence

Assuming that , . Using the ratio test, what can we say about the series:

Possible Answers:

We cannot conclude when we use the ratio test.

It is convergent.

Correct answer:

We cannot conclude when we use the ratio test.

Explanation:

As required by this question we will have to use the ratio test.  if L<1 the series converges absolutely, L>1 the series diverges, and if L=1 the series could either converge or diverge.

To do so, we will need to compute : . In our case:

 

Therefore

.

We know that

This means that

Since L=1 by the ratio test, we can't conclude about the convergence of the series.

Example Question #1 : Ratio Test

We consider the series : , use the ratio test to determine the type of convergence of the series.

Possible Answers:

The series is fast convergent.

It is clearly divergent.

We cannot conclude about the nature of the series.

Correct answer:

We cannot conclude about the nature of the series.

Explanation:

To be able to use to conclude using the ratio test, we will need to first compute the ratio then use  if L<1 the series converges absolutely, L>1 the series diverges, and if L=1 the series could either converge or diverge. Computing the ratio we get,

.

We have then:

Therefore have :

  

It is clear that .

By the ratio test , we can't conclude about the nature of the series.

Example Question #2 : Ratio Test

Consider the following series :

where is given by:

. Using the ratio test, find the nature of the series.

Possible Answers:

The series is convergent.

We can't conclude when using the ratio test.

Correct answer:

We can't conclude when using the ratio test.

Explanation:

Let be the general term of the series. We will use the ratio test to check the convergence of the series. 

 if L<1 the series converges absolutely, L>1 the series diverges, and if L=1 the series could either converge or diverge.

We need to evaluate,

 we have:

.

Therefore:

. We know that,

 and therefore

This means that :

.

By the ratio test we can't conclude about the nature of the series. We will have to use another test.

 

Learning Tools by Varsity Tutors