GRE Subject Test: Math : Algebra

Study concepts, example questions & explanations for GRE Subject Test: Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Vector Form

Compute:  \displaystyle 2\vec{a}-6\vec{b} given the following vectors.  \displaystyle \vec{a}= \left \langle 1,3\right \rangle and \displaystyle \vec{b}= \left \langle 1\right \rangle.

Possible Answers:

The answer does not exist.

\displaystyle \left \langle -4,0\right \rangle

\displaystyle {}\left< \sqrt{13} \right \rangle

\displaystyle \left \langle 1,2\right \rangle

\displaystyle \left \langle -4,3\right \rangle

Correct answer:

The answer does not exist.

Explanation:

The dimensions of the vectors are mismatched.  

Since vector \displaystyle \vec{a} does not have the same dimensions as \displaystyle \vec{b}, the answer for \displaystyle 2\vec{a}-6\vec{b} cannot be solved.

Example Question #1 : Vector Form

What is the vector form of \displaystyle 2i-10k?

Possible Answers:

\displaystyle \left \langle -10,2,0\right \rangle

\displaystyle \left \langle 2,-10,0\right \rangle

\displaystyle \left \langle 2,0,-10\right \rangle

Correct answer:

\displaystyle \left \langle 2,0,-10\right \rangle

Explanation:

To find the vector form of \displaystyle 2i-10k, we must map the coefficients of \displaystyle i\displaystyle j, and \displaystyle k to their corresponding \displaystyle x\displaystyle y, and \displaystyle z coordinates. Thus, \displaystyle 2i-10k becomes \displaystyle \left \langle 2,0,-10\right \rangle.

Example Question #1 : Vector Form

Express \displaystyle -2i+7j-10k in vector form.

Possible Answers:

\displaystyle \left \langle 2,7,-10\right \rangle

\displaystyle \left \langle -2,-7,-10\right \rangle

\displaystyle \left \langle 2,7,10\right \rangle

\displaystyle \left \langle -2,7,-10\right \rangle

\displaystyle \left \langle 2,-7,10\right \rangle

Correct answer:

\displaystyle \left \langle -2,7,-10\right \rangle

Explanation:

In order to express \displaystyle -2i+7j-10k in vector form, we must use the coefficients of \displaystyle i, j,and \displaystyle k to represent the \displaystyle x-, \displaystyle y-, and \displaystyle z-coordinates of the vector.

Therefore, its vector form is 

\displaystyle \left \langle -2,7,-10\right \rangle.

Example Question #1 : Vector Form

Express \displaystyle i+5k in vector form.

Possible Answers:

\displaystyle \left \langle -1,5\right \rangle

\displaystyle \left \langle -1,-5\right \rangle

\displaystyle \left \langle -1,0,5\right \rangle

\displaystyle \left \langle 1,5\right \rangle

\displaystyle \left \langle 1,0,5\right \rangle

Correct answer:

\displaystyle \left \langle 1,0,5\right \rangle

Explanation:

In order to express \displaystyle i+5k in vector form, we must use the coefficients of \displaystyle i, j,and \displaystyle k to represent the \displaystyle x-, \displaystyle y-, and \displaystyle z-coordinates of the vector.

Therefore, its vector form is 

\displaystyle \left \langle 1,0,5\right \rangle.

Example Question #91 : Vector

Express \displaystyle 4i-9j in vector form.

Possible Answers:

\displaystyle \left \langle 0,4,-9\right \rangle

\displaystyle \left \langle 4,-9,0\right \rangle

\displaystyle \left \langle 4,0,-9\right \rangle

\displaystyle \left \langle 4,-9\right \rangle

\displaystyle \left \langle 4,9,0\right \rangle

Correct answer:

\displaystyle \left \langle 4,-9,0\right \rangle

Explanation:

In order to express \displaystyle 4i-9j in vector form, we must use the coefficients of \displaystyle i, j,and \displaystyle k to represent the \displaystyle x-, \displaystyle y-, and \displaystyle z-coordinates of the vector.

Therefore, its vector form is 

\displaystyle \left \langle 4,-9,0\right \rangle.

Example Question #1 : Vector Form

Express \displaystyle -j+7k in vector form.

Possible Answers:

\displaystyle \left \langle -1,0,7\right \rangle

None of the above

\displaystyle \left \langle-1,7\right \rangle

\displaystyle \left \langle 0,-1,7\right \rangle

\displaystyle \left \langle -1,7,0\right \rangle

Correct answer:

\displaystyle \left \langle 0,-1,7\right \rangle

Explanation:

In order to express \displaystyle -j+7k in vector form, we will need to map its \displaystyle i\displaystyle j, and \displaystyle k coefficients to its \displaystyle x-, \displaystyle y-, and \displaystyle z-coordinates.

Thus, its vector form is 

\displaystyle \left \langle 0,-1,7\right \rangle

Example Question #11 : Vector Form

Express \displaystyle 5i+9j-2k in vector form.

Possible Answers:

\displaystyle \left \langle 5,9,-2\right \rangle

\displaystyle \left \langle 9,5,-2\right \rangle

\displaystyle \left \langle -2,5,9\right \rangle

\displaystyle \left \langle 9,-2,5\right \rangle

None of the above

Correct answer:

\displaystyle \left \langle 5,9,-2\right \rangle

Explanation:

In order to express \displaystyle 5i+9j-2k in vector form, we will need to map its \displaystyle i\displaystyle j, and \displaystyle k coefficients to its \displaystyle x-, \displaystyle y-, and \displaystyle z-coordinates.

Thus, its vector form is 

\displaystyle \left \langle 5,9,-2\right \rangle

Example Question #32 : Linear Algebra

Express \displaystyle -2i+3j in vector form.

Possible Answers:

\displaystyle \left \langle -2,3,0\right \rangle

\displaystyle \left \langle -2,3\right \rangle

\displaystyle \left \langle -2,0,3\right \rangle

None of the above

\displaystyle \left \langle 0,-2,3\right \rangle

Correct answer:

\displaystyle \left \langle -2,3,0\right \rangle

Explanation:

In order to express \displaystyle -2i+3j in vector form, we will need to map its \displaystyle i\displaystyle j, and \displaystyle k coefficients to its \displaystyle x-, \displaystyle y-, and \displaystyle z-coordinates.

Thus, its vector form is 

\displaystyle \left \langle -2,3,0\right \rangle

Example Question #11 : Vector Form

What is the vector form of \displaystyle 4i+4j-2k?

Possible Answers:

\displaystyle \left \langle-2,4,4\right \rangle

None of the above

\displaystyle \left \langle 4,-2,4\right \rangle

\displaystyle \left \langle 4,-2,4\right \rangle

\displaystyle \left \langle 4,4,-2\right \rangle

Correct answer:

\displaystyle \left \langle 4,4,-2\right \rangle

Explanation:

To find the vector form of \displaystyle 4i+4j-2k, we must map the coefficients of \displaystyle i\displaystyle j, and \displaystyle k to their corresponding \displaystyle x\displaystyle y, and \displaystyle z coordinates.

Thus, \displaystyle 4i+4j-2k becomes \displaystyle \left \langle 4,4,-2\right \rangle.

Example Question #11 : Vectors & Spaces

What is the vector form of \displaystyle -9j+k?

Possible Answers:

\displaystyle \left \langle 1,0,-9\right \rangle

\displaystyle \left \langle -9,1,0\right \rangle

\displaystyle \left \langle 0,-9,1\right \rangle

\displaystyle \left \langle -9,0,1\right \rangle

None of the above

Correct answer:

\displaystyle \left \langle 0,-9,1\right \rangle

Explanation:

To find the vector form of \displaystyle -9j+k, we must map the coefficients of \displaystyle i\displaystyle j, and \displaystyle k to their corresponding \displaystyle x\displaystyle y, and \displaystyle z coordinates.

Thus, \displaystyle -9j+k becomes \displaystyle \left \langle 0,-9,1\right \rangle.

Learning Tools by Varsity Tutors