GRE Subject Test: Chemistry : Organic Chemistry

Study concepts, example questions & explanations for GRE Subject Test: Chemistry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #25 : Carbonyl Reactants

Which of the following statements is false?

Possible Answers:

The catalyzed ring-opening of an epoxide in aqueous acid will yield a cis glycol

The base-promoted ring-opening of an epoxide using aqueous NaOH will yield a trans glycol

Treatment of an unhindered epoxide with a Grignard reagent will result in a nucleophilic attack at the less hindered carbon

Treatment of an unsymmetrical epoxide with methanol and acid will result in nucleophilic attack at the more hindered carbon

A nucleophile attacks an epoxide to yield an alcohol

Correct answer:

The catalyzed ring-opening of an epoxide in aqueous acid will yield a cis glycol

Explanation:

The statement "The catalyzed ring opening of an epoxide in aqueous acid will yield a cis glycol" is incorrect. These reaction conditions will yield a trans glycol. In fact, regardless of conditions, the opening of an epoxide will always yield a trans glycol (the two alcohol groups are on opposite sides).

Example Question #26 : Carbonyl Reactants

All of the following electrophilic substrates can theoretically undergo substitution reactions, however, at different rates. Rank them from most to least reactive in the presence of a nucleophile.

               Q7

Possible Answers:

III > I > II > IV

II > III > I > IV

II > IV > III > I

I > IV > III > II

I > III > II > IV

Correct answer:

II > III > I > IV

Explanation:

As the first step in a substitution reaction involves a nucleophilic attack at an electrophilic carbonyl carbon, we must consider the varying reactivity of the electrophilic carbonyl center. Resonance diagrams, as well as an understanding of electronegativity, will help us understand the degree to which this effect is observed in a substrate. 

Resonance diagrams for all four substrates show how electrons contained in the leaving group's heteroatom may be shared throughout the carbonyl system, effectively placing a partial negative charge on the electrophilic carbon. To determine which is the most electrophilic, we must identify the resonance diagram below that contributes the least to the overall molecule. This molecule will be least stable and most reactive.

Note: Remember, resonance diagrams show possible electron distributions, and a molecule exists as a weighted average of these possibilities, favoring the more stable ones. 

Compound II is the most electrophilic substrate, as the lone pair on the central oxygen molecule must be shared between two carbonyls. The resonance forms below each contribute very little to the overall molecule. This is not the case in any other pictured substrate.

Now compare compounds I and III. Resonance for these molecules is essentially identical, with a nitrogen atom in compound I and an oxygen atom in compound III. We may conclude that the resonance form of compound III contributes less to the true existence of the molecule, as oxygen is more electronegative. The sharing of electrons will be less favorable in the resonance form of compound III than the resonance form of compound I. 

For compound IV, both resonance structures are equally stable, and the molecule will exist as an average of both structures, placing a fair amount of electron density at the carbonyl carbon, drastically reducing the electrophilicity of the central carbon.

             A7

 

If this above explanation is confusing to you, you may also compare how good the leaving groups are. Acetate, the leaving group of compound II, is a stable ion and will readily leave in a substitution reaction. Methoxide is the next best leaving group, from compound III, followed by the negatively charged ethanamine leaving group from compound I. As  will be a terrible leaving group, a substitution reaction with carboxylate substrates, such as compound IV, will never occur.

The compounds, in order of reactivity, are II > III > I > IV.

Example Question #21 : Organic Chemistry

Which of these methods can be used to synthesize a secondary alcohol?

Possible Answers:

Adding a Grignard reagent to an aldehyde, then reacting with acid

Reacting propene with water and acid

All of these answer choices are correct

Reacting a ketone with lithium aluminum hydride, then adding water

Correct answer:

All of these answer choices are correct

Explanation:

All of these methods can successfully synthesize secondary alcohols.

Lithium aluminum hydride and sodium borohydride are strong and weaker reducing agents, respectively. Both are able to reduce ketones to secondary alcohols.

Adding water and acid to an alkene (such as propene) results in Markovnikov addition of a hydroxyl group, also creating a secondary alcohol.

Grignard reagents (organometallic halides) add to the carbonyl carbon of an aldehyde, adding an alkane group and forming an alcohol product.

Example Question #1 : Functional Groups And Properties

Ephedrine (shown below) contains what type of amine?

Mcat_problem_set_1

Possible Answers:

Secondary

Neutral

Tertiary

Primary

Quaternary

Correct answer:

Secondary

Explanation:

A secondary amine is an amine (nitrogen atom) that is attached to two carbon-containing groups (alkyl groups or aryl groups). The nitrogen in ephedrine is attached to two alkyl groups, making it a secondary amine.

Primary amines are generally written as . Secondary amines are generally written as . A tertiary amine will be bound to three different R-groups. Quaternary amines require a positive charge on the nitrogen atom to accommodate a fourth R-group.

Example Question #1 : Halide Chemistry

Which of the following factors do NOT favor an SN2 reaction of an alkyl halide?

Possible Answers:

A good nucleophile 

A polar aprotic solvent

A tertiary carbocation

A primary halide

Correct answer:

A tertiary carbocation

Explanation:

The way the question is phrased, three answer choices must favor an SN2 reaction, while the "correct" answer is a factor that does not favor, or disfavors an SN2 reaction.

SN2 reactions are bimolecular, and thus their rate of reaction depends on both the substrate and the nucleophile, forming a high energy transition state in which the nucleophile will displace the substate's leaving group at an angle of 180o. The more sterically hindered the compound is, the higher in energy the transition state will be, and the slower the rate of reaction will be. Consequently, SN2 reactions are favored when the leaving group (a halogen in this case) is on a primary carbon center. Additionally, because the reaction is bimolecular, step two of the reaction will NOT occur without a good nucleophile to displace the leaving group. Finally, all SN2 reactions are favored by polar aprotic solvents.  

Because SN2 reactions proceed via a transition state, no carbocation intermediate is formed (that happens in SN1 reactions) and therefore the formation of any carbocation favors an SN1 reaction, not an SN2 reaction.

Example Question #5 : Substitution And Elimination Mechanisms

Organic reactions can often be classified into two broad categories: substitution and elimination. Substitution reactions substitute one substituent for another. Elimination reactions typically form after the wholesale removal of a substituent, with no replacement. Below are examples of two types of reactions.

Reaction 1:

1

Reaction 2:

2

Using the product of reaction 2, a scientist adds bromine gas to the reaction chamber. After the bromine and the alkene react, he finds that his product consists entirely of single bonds, with two bromine atoms on the carbon chain. What kind of reaction most likely took place?

Possible Answers:

Substitution reaction

Addition reaction

Halogenation reaction

Oxymercuration/demercuration reaction

Elimination reaction

Correct answer:

Addition reaction

Explanation:

The addition of bromine gas () to the reaction vessel would likely result in the addition of one half of the diatomic bromine to each carbon, eliminating the double bond and resulting in an alkyl halide chain.

Halogenation reactions refer to reactions between a halogen and an alkane, while addition reactions occur between a halogen and an alkene (such as the product in reaction 2).

Example Question #31 : Reactions

Organic reactions can often be classified into two broad categories: substitution and elimination. Substitution reactions substitute one substituent for another. Elimination reactions typically form after the wholesale removal of a substituent, with no replacement. Below are examples of two types of reactions.

Reaction 1:

1

Reaction 2:

2

Investigating reaction 2, you find that the reaction is initiated when a carbocation forms. Which of the following is likely true?

I. Concentration of the halide is the main determinant of reaction rate

II. The carbocation forms when the hydroxide removes the chlorine atom

III. The carbocation is planar

 

Possible Answers:

III, only

II and III

I and II

I and III

I, only

Correct answer:

I and III

Explanation:

The carbocation forms spontaneously with the loss of the chlorine atom. This is the rate determining step, thus, the concentration of the halide is the most important determinant of reaction rate. Carbocations form spontaneously in these reactions, and do not use the strong base to remove the halogen.

Example Question #15 : Reaction Mechanisms

Organic reactions can often be classified into two broad categories: substitution and elimination. Substitution reactions substitute one substituent for another. Elimination reactions typically form after the wholesale removal of a substituent, with no replacement. Below are examples of two types of reactions.

Reaction 1:

1

Reaction 2:

2

A scientist is studying the rate of reaction 1. He wants to double the rate of the reaction, but is unsure how to increase concentrations of the reactants. Which of the following is true?

Possible Answers:

Doubling the concentration of the halide only will quadruple the reaction rate

Doubling the concentration of the hydroxide only will quadruple the reaction rate

Doubling the concentrations of both the hydroxide and the halide will quadruple the reaction rate

Reaction rate in this reaction is not determined by concentration

Neither doubling the concentration of halide, nor doubling the concentration of hydroxide, will quadruple the reaction rate

Correct answer:

Doubling the concentrations of both the hydroxide and the halide will quadruple the reaction rate

Explanation:

Reaction 1 represents an SN2 reaction. The rate limiting step involves both reactants coming together to form a transition state. The rate of this reaction depends on the concentration of both the organic molecule and the nucleophile.

In contrast, reaction 2 is an E1 reaction, in which the rate limiting step is the removal of the leaving group to form a carbocation. In E1 and SN1 reactions, adjusting the concentration of the halide only is enough to affect the rate.

Example Question #1 : Help With Organic Proteins

Which of the following amino acids can participate in the formation of a disulfide bridge?

Possible Answers:

Phenylalanine

Tyrosine

Aspartic acid

Cysteine

Alanine

Correct answer:

Cysteine

Explanation:

Cysteine's R-group contains a sulfhydryl group (-SH), which can participate in the formation of a disulfide bridge in a protein's tertiary and/or quaternary structure. Cysteine is the only amino acid to contain a sulfur atom.

Example Question #1 : Specific Reactions And Named Reactions

Which substrate, when subjected to ozonolysis followed by treatment with dimethyl sulfide, would give only one hydrocarbon product?

Possible Answers:

1,7-octadiene

1,3-octadiene

3-octene

2-octene

4-octene

Correct answer:

4-octene

Explanation:

Ozonolysis is essentially used to cleave a compound at the location of a double bond. For the result to be a single product, the cleavage must occur at a point of symmetry.

4-octene, a symmetrical alkene, would give two equivalents of butanal upon ozonolysis. All of the other compounds are unsymmetrical and would give at least two different non-identical products.

Learning Tools by Varsity Tutors