All GRE Math Resources
Example Questions
Example Question #3 : Rectangles
If a rectangle's width is increased by 20%, and its length is decreased by 20%, which statement most accurately reflects the rectangle's change in area?
The rectangle's area will be reduced by 4%.
The rectangle's area will be decreased by 10.%
The rectangle's area will not change.
The rectangle's area will be increased by 10%.
The rectangle's area will be increased by 4%.
The rectangle's area will be reduced by 4%.
If l x w = A, then we will call the new area B. B results when l has been decreased by 20% and w has been increased by 20%: in other words, 80% of l and 120% of w.
This is expressed as (0.8) l * (1.2) w = B
The simplest way to determine the result is to create rectangles with actual integers and see what happens. Let's say our first rectangle is a square 10 units by 10 units.
10 * 10 = 100 for our A.
Plugging these numbers into our new equation gives us:
(0.8)10 * (1.2)10 = 96.
So the final step is to compare the areas. Because we used a 10 x 10 rectangle as our example, this step will be easy, since 100% = 100.
96/100 = 0.96
0.96 * 100 = 96%
Which reflects a 4% reduction in the size of the rectangle.
Any other length and width used for this rectangle will result in a 4% reduction in size when the above parameters are applied.
Example Question #153 : Plane Geometry
Amy is building a rectangular patio in her backyard. She plans on making the patio 8 feet wide by 12 feet long. The rectangular bricks she is using are 6 inches long and 4 inches wide. How many bricks will Amy need to build her patio?
424
384
782
576
96
576
Because Amy is building her patio in a rectangle, and the bricks are rectangular, the simplest way to find this solution is to determine how many bricks long and how many bricks wide her patio will be.
To do this, begin by converting the patio's dimensions into inches, since the bricks Amy is using are measured in inches.
Length:
12 feet * 12 inches in a foot = 144 inches long.
Width:
8 feet * 12 inches in a foot = 96 inches wide.
Now, all that's left to do is figure out how many bricks will fit in these spaces. Let's be intuitive and assume the long sides of the bricks will align with the long sides of the patio.
144 inches long / bricks that are 6 inches long = 24 bricks long
Amy will need columns of 24 bricks to cover the length of her patio. Now, for the width.
96 inches wide / bricks that are 4 inches wide = 24 bricks wide
Amy will need rows of 24 bricks to cover the width of her patio.
To determine how many bricks Amy will need in total, the last step is to multiply how many rows of bricks she will need by how many columns.
24 bricks to a row * 24 bricks to a column = 576
Amy needs 576 bricks to build her patio.
Example Question #4 : Rectangles
Quantity A: The area of a rectangle with a perimeter of 40
Quantity B: The area of a triangle with a perimeter of 40
The two quantities are equal
The relationship cannot be determined from the information given
Quantity B is greater
Quantity A is greater
The relationship cannot be determined from the information given
The area of the two shapes depends on their dimensions, which can vary greatly among different combinations. A rectangle with a perimeter of 40 could have dimensions of (smaller area) or (larger area), for instance. Similarly, a triangle could have sides of 10--11--19 (smaller area) or 13--13--14 (larger area). Thus, the relationship cannot be determined without more specific details.
Example Question #6 : Rectangles
The perimeter of a rectangle is . One side is . What is the area of this rectangle?
Recall that perimeter is defined as:
For our data, this is:
Solve for :
Therefore,
This means that the area of the rectangle is equal to:
Example Question #1 : How To Find The Area Of A Rectangle
Rectangle has a length of 20 inches and a width of 3 inches. Rectangle has a length of 9 inches and a width of 10 inches. By what number must the area of rectangle be multiplied by to equal the area of rectangle ?
Area of rectangle is .
Area of rectangle is
Example Question #1 : How To Find The Perimeter Of A Rectangle
Quantity A
The perimeter of a square with a diagonal of 12 inches.
Quantity B
The perimeter of a rectangle with a diagonal of 10 inches and longer sides that are three times the length of its shorter sides.
The relationship cannot be determined from the information given.
The quantities are equal.
Quantity B is greater.
Quantity A is greater.
Quantity A is greater.
The diagonal of a square creates a 45-45-90 triangle; therefore, considering x as the value for the sides of the square in A, set up the ratio: 1/√2 = x/12 → x = 12/√2
Simplify the square root out of the denominator: x = (12√2)/2 = 6√2. The perimeter is equal to 4x; therefore, quantity A is 24√2.
Use the Pythagorean Theorem for B. We know that one side of the triangle is x and the other must be 3x. Furthermore, we know the hypotenuse is 10; therefore:
x2 + (3x)2 = 102 → x2 + 9x2 = 100 → 10x2 = 100 → x2 = 10 → x = √10.
Transform the √10 into √2 * √5 ; therefore, x = √2 * √5 . The perimeter of the rectangle will equal 3x + 3x + x + x = 8x = 8√2 * √5 .
Compare these two values. Quantity A has a coefficient of 24 in for its √2 . Quantity B has a coefficient of 8√5, which must be smaller than 24, because 8 * 3 = 24, but √5 is less than 3 (which would be √9 ); therefore, A is larger.
Example Question #2 : How To Find The Perimeter Of A Rectangle
A rectangle has a length that is twice that of its height. If the perimeter of that rectangle is , what is its area?
Based on our first sentence, we know:
The second sentence means:
, which is the same as:
Now, we can replace with in the second equation:
Therefore,
Now, this means that:
If these are our values, then the area of the rectangle is:
Example Question #42 : Quadrilaterals
A rectangle with an area of 64 square units is one-fourth as wide as it is long. What is the perimeter of the rectangle?
Begin by setting up a ratio of width to length for the rectangle. We know that the width is one-fourth the length, therefore
.
Now, we can substitute W in the rectangle area formula with our new variable to solve for the length.
Solve for length:
Using the length, solve for Width:
Now, plug the length and width into the formula for the perimeter of a rectangle to solve:
The perimeter of the rectangle is 40.
Example Question #1 : How To Find If Rectangles Are Similar
The perimeter of a rectangle is 14, and the diagonal connecting two vertices is 5.
Quantity A: 13
Quantity B: The area of the rectangle
Quantity B is greater.
The relationship between A and B cannot be determined.
Quantity A is greater.
The two quantities are equal.
Quantity A is greater.
One potentially helpful first step is to draw the rectangle described in the problem statement:
After that, it's a matter of using the other information given. The perimeter is given as 14, and can be written in terms of the length and width of the rectangle:
Furthermore, notice that the diagonal forms the hypotenuse of a right triangle. The Pythagorean Theorem may be applied:
This provides two equations and two unknowns. Redefining the first equation to isolate gives:
Plugging this into the second equation in turn gives:
Which can be reduced to:
or
Note that there are two possibile values for ; 3 or 4. The one chosen is irrelevant. Choosing a value 3, it is possible to then find a value for :
This in turn allows for the definition of the rectangle's area:
So Quantity B is 12, which is less than Quantity A.
Example Question #163 : Geometry
One rectangle has sides of and . Which of the following pairs could be the sides of a rectangle similar to this one?
and
and
and
and
and
For this problem, you need to find the pair of sides that would reduce to the same ratio as the original set of sides. This is a little tricky at first, but consider the set:
and
For this, you have:
Now, if you factor out , you have:
Thus, the proportions are the same, meaning that the two rectangles would be similar.