All GRE Math Resources
Example Questions
Example Question #17 : Geometry
Circle B has a circumference of 36π. What is the area of circle A, which has a radius half the length of the radius of circle B?
81π
9π
18π
324π
18
81π
To find the radius of circle B, use the circumference formula (c = πd = 2πr):
2πr = 36π
Divide each side by 2π: r = 18
Now, if circle A has a radius half the length of that of B, A's radius is 18 / 2 = 9.
The area of a circle is πr2. Therefore, for A, it is π*92 = 81π.
Example Question #11 : Radius
"O" is the center of the circle as shown below.
A
---
The radius of the circle
B
---
3
Quanitity A is greater
The relationship cannot be determined
Quantity B is greater
The two quantities are equal
Quantity B is greater
We know the triangle inscribed within the circle must be isosceles, as it contains a 90-degree angle and fixed radii. As such, the opposite angles must be equal. Therefore we can use a simplified version of the Pythagorean Theorem,
a2 + a2 = c2 → 2r2 = 16 → r2 = 8; r = √8 < 3. (since we know √9 = 3, we know √8 must be less); therefore, Quantity B is greater.
Example Question #15 : Geometry
Which point could lie on the circle with radius 5 and center (1,2)?
(4,6)
(–3, 6)
(3,–2)
(3,4)
(4,–1)
(4,6)
A radius of 5 means we need a distance of 5 from the center to any points on the circle. We need 52 = (1 – x2)2 + (2 – y2)2. Let's start with the first point, (3,4). (1 – 3)2 + (2 – 4)2 ≠ 25. Next let's try (4,6). (1 – 4)2 + (2 – 6)2 = 25, so (4,6) is our answer. The same can be done for the other three points to prove they are incorrect answers, but this is something to do ONLY if you have enough time.
Example Question #21 : Geometry
A circular fence around a monument has a circumference of feet. What is the radius of this fence?
This question is easy on the whole, though you must not be intimidated by one small fact that we will soon see. Set up your standard circumference equation:
The circumference is feet, so we can say:
Solving for , we get:
Some students may be intimidated by having in the denominator; however, there is no need for such intimidation. This is simply the answer!
Example Question #22 : Geometry
Circle has a center in the center of Square .
The area of Square ABCD is .
What is the radius of Circle ?
Since we know that the area of Square is , we know , where is the length of one of its sides. From this, we can solve for by taking the square root of both sides. You will have to do this by estimating upward. Therefore, you know that is . By careful guessing, you can quickly see that is . From this, you know that the diameter of your circle must be half of , or (because it is circumscribed). Therefore, you can draw:
Example Question #1211 : Gre Quantitative Reasoning
The formula to find the radius of the largest circle that can fit in an equilateral triangle is , where is the length of any one side of the triange.
What is the largest diameter of a circle that can fit inside an equilateral triangle with a perimeter of cm?
cm
cm
cm
cm
cm
The diameter is
To solve for the largest diameter multiply each side by 2.
The resulting formula for diamenter is
.
Substitute in 5 for S and solve. Diameter = = 2.89 cm
Example Question #21 : Plane Geometry
Quantity A: The diameter of a circle with area of
Quantity B: The diameter of a circle with circumference of
Which of the following is true?
Both quantities are equal.
Quantity A is larger.
Quantity B is larger.
The relationship of the quantities cannot be determined.
Quantity B is larger.
Consider each quantity separately.
Quantity A
Recall that the area of a circle is defined as:
We know that the area is . Therefore,
Divide both sides by :
Therefore, . Since , we know:
Quantity B
This is very easy. Recall that:
Therefore, if , . Therefore, Quantity B is larger.
Example Question #23 : Geometry
Quantity A: The diameter of a circle with area of
Quantity B: The diameter of a circle with circumference of
Which of the following is true?
The relationship between the quantities cannot be determined.
Quantity B is larger.
Quantity A is larger.
The two quantities are equal.
Quantity B is larger.
Consider each quantity separately.
Quantity A
Recall that the area of a circle is defined as:
We know that the area is . Therefore,
Divide both sides by :
Therefore, . Since , we know:
Quantity B
This is very easy. Recall that:
Therefore, if , .
Now, since your calculator will not have a square root button on it, we need to estimate for Quantity A. We know that is . Therefore, . This means that . Therefore, Quantity B is larger.
Example Question #1 : How To Find The Ratio Of Diameter And Circumference
A circle with an area of is divided into sectors with areas in a ratio of . What is the area of the largest sector?
From the ratio given , it may be easier to write it such that the terms sum up to . This can be taken by dividing each term by the sum of the terms:
or
The largest sector thus has an area equal to
Example Question #1 : How To Find The Ratio Of Diameter And Circumference
A rectangle is inscribed inside of a circle such that every corner touches the edge of the circle. If the area of the rectangle is and the perimeter of the rectangle is , what is the area of the circle in inches squared?
The answer cannot be determined.
To find the area of the circle, it is important to know either its diameter or radius. For the geometry described in this problem, this is the same as the diagonal of the rectangle.
However, to find the diagonal of the rectangle, the sides must first be known. They can be found, since the perimeter and area are given:
This system of equation can be solved by substitution:
Followed by:
Note that this gives two possible values for , or , though the one selected is irrelevant; the other value will be the value for .
Knowing these two values, the diagonal can be found; it is the hypotenuse of a right triangle formed by these two lengths:
Since the diagonal is also the diameter, the area of the circle is given by: