GMAT Math : Understanding factoring

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Understanding Factoring

Factor 4y^{2}+4y-15\displaystyle 4y^{2}+4y-15.

Possible Answers:

\dpi{100} \small (2y+3)(2y-5)

\dpi{100} \small (y-3)(y+5)

\dpi{100} \small (2y-3)(2y+3)

\dpi{100} \small (2y-3)(2y+5)

\dpi{100} \small (2y-5)(2y+5)

Correct answer:

\dpi{100} \small (2y-3)(2y+5)

Explanation:

To factor this, we need two numbers that multiply to \dpi{100} \small 4\times -15=60 and sum to \dpi{100} \small 4. The numbers \dpi{100} \small -6 and \dpi{100} \small 10 work.

4y^{2}+4y-15 = 4y^{2} - 6y + 10y - 15 = 2y(2y-3) + 5(2y-3) = (2y-3)(2y+5)\displaystyle 4y^{2}+4y-15 = 4y^{2} - 6y + 10y - 15 = 2y(2y-3) + 5(2y-3) = (2y-3)(2y+5)

Example Question #1 : Understanding Factoring

Factor \frac{y-x}{x^{2}-y^{2}}\displaystyle \frac{y-x}{x^{2}-y^{2}}.

Possible Answers:

\frac{1}{x^{2}-y^{2}}\displaystyle \frac{1}{x^{2}-y^{2}}

\frac{y-x}{x+y}\displaystyle \frac{y-x}{x+y}

\frac{y-x}{x-y}\displaystyle \frac{y-x}{x-y}

\frac{-1}{x+y}\displaystyle \frac{-1}{x+y}

\frac{1}{x+y}\displaystyle \frac{1}{x+y}

Correct answer:

\frac{-1}{x+y}\displaystyle \frac{-1}{x+y}

Explanation:

{x^{2}-y^{2}}\displaystyle {x^{2}-y^{2}} is a difference of squares. The difference of squares formula is

{a^{2}-b^{2}} = (a-b)(a+b)\displaystyle {a^{2}-b^{2}} = (a-b)(a+b)

So {x^{2}-y^{2}} = (x-y)(x+y)\displaystyle {x^{2}-y^{2}} = (x-y)(x+y).

Then, \frac{y-x}{x^{2}-y^{2}} = \frac{y-x}{(x+y)(x-y)} = \frac{-(x-y)}{(x+y)(x-y)} = \frac{-1}{x+y}\displaystyle \frac{y-x}{x^{2}-y^{2}} = \frac{y-x}{(x+y)(x-y)} = \frac{-(x-y)}{(x+y)(x-y)} = \frac{-1}{x+y}.

Example Question #1491 : Gmat Quantitative Reasoning

Solve x^{2}-6x+5>0\displaystyle x^{2}-6x+5>0.

Possible Answers:

\displaystyle x>5

\displaystyle 1< x< 5

\displaystyle x< -1

\displaystyle x>5\ or\ x< 1

\displaystyle x>1

Correct answer:

\displaystyle x>5\ or\ x< 1

Explanation:

Let's factor the expression: x^{2}-6x+5 = (x-1)(x-5)\displaystyle x^{2}-6x+5 = (x-1)(x-5).

We need to look at the behavior of the function to the left and right of 1 and 5.  To the left of \displaystyle x=1,

x^{2}-6x+5>0\displaystyle x^{2}-6x+5>0

You can check this by plugging in any value smaller than 1. For example, if \displaystyle x=0,

\displaystyle (x-1)(x-5)=5,

which is greater than 0.

When \displaystyle x takes values in between 1 and 5, x^{2}-6x+5 <0\displaystyle x^{2}-6x+5 < 0.  Again we can check this by plugging in a number between 1 and 5. 

\displaystyle x=2,(x-1)(x-5)=-3, which is less than 0, so no numbers between 1 and 5 satisfy the inequality.

When \displaystyle x takes values greater than 5, x^{2}-6x+5>0\displaystyle x^{2}-6x+5>0

To check, let's try \displaystyle x=6.  Then:

\displaystyle (x-1)(x-5)=5

so numbers greater than 5 also satisfy the inequality.

Therefore \displaystyle x>5\ or\ x< 1.

Example Question #1 : Understanding Factoring

Solve x^{2}+7x-8 <0\displaystyle x^{2}+7x-8 < 0.

Possible Answers:

\displaystyle x< 1

\displaystyle x>-8

\displaystyle -8< x< 1

\displaystyle x< -8\ or\ x>1

\displaystyle x< -1\ or\ x>8

Correct answer:

\displaystyle -8< x< 1

Explanation:

First let's factor: x^{2}+7x-8=(x+8)(x-1)\displaystyle x^{2}+7x-8=(x+8)(x-1)

x < -8: Let's try -10.  (-10 + 8)(-10 - 1) = 22, so values less than -8 don't satisfy the inequality.

-8 < x < 1: Let's try 0.  (0 + 8)(0 - 1) = -8, so values in between -8 and 1 satisfy the inequality.

x > 1: Let's try 2.  (2 + 8)(2 - 1) = 10, so values greater than 1 don't satisfy the inequality.

Therefore the answer is -8 < x < 1.

Example Question #2 : Understanding Factoring

Factor the expression completely:

\displaystyle 6,561x^{8}-256

Possible Answers:

\displaystyle (9x^{2} + 4) ^{2}(9x^{2} - 4)^{2}

\displaystyle (81x^{4}+ 16)^{2}

\displaystyle (3x + 2)^{4}(3x - 2)^{4}

Correct answer:

Explanation:

This expression can be rewritten:

\displaystyle 6,561x^{8}-256

\displaystyle (81x^{4})^{2}- 16^{2}

As the difference of squares, this can be factored as follows: 

\displaystyle (81x^{4}+ 16)(81x^{4}- 16)

As the sum of squares with relatively prime terms, the first factor is a prime polynomial. The second factor can be rewritten as the difference of two squares and factored:

\displaystyle (81x^{4}+ 16)\left [(\left (9x^{2} \right )^{2}- 4^{2}) \right ]

Similarly, the middle polynomial is prime; the third factor can be rewritten as the difference of two squares and factored:

This is as far was we can factor, so this is the complete factorization.

Example Question #3 : Understanding Factoring

\displaystyle x^{2} - 9 x + 18

Where does this function cross the \displaystyle x-axis?

Possible Answers:

It never crosses the x axis.

\displaystyle x=3, 6

\displaystyle x=0

\displaystyle x=9, 18

\displaystyle x=5, 10

Correct answer:

\displaystyle x=3, 6

Explanation:

Factor the equation and set it equal to zero.  \displaystyle (x-6)*(x-3)=0. So the funtion will cross the \displaystyle x-axis when

\displaystyle x=3\ or\ x=6

Example Question #2 : Understanding Factoring

If \displaystyle a^{2}-b^{2}=15, and \displaystyle a+b=5, what is the value of \displaystyle a-b?

Possible Answers:

\displaystyle 3

\displaystyle 5

\displaystyle 4

\displaystyle 1

\displaystyle 2

Correct answer:

\displaystyle 3

Explanation:

This questions tests the formula: \displaystyle a^2-b^2=(a+b)*(a-b).

Therefore, we have \displaystyle 15=5(a-b). So

\displaystyle a-b=\frac{15}{5}=3

Example Question #2 : Understanding Factoring

Factor:

\displaystyle 64 - 4x^{2} + 20xy - 25y^{2}

Possible Answers:

\displaystyle (8+ 2x-5y) ^{2}

\displaystyle (8+ 2x-5y) (8- 2x+5y)

\displaystyle (8- 2x-5y) (8- 2x+5y)

\displaystyle (8- 2x+5y)^{2}

\displaystyle (8+ 2x-5y) (8- 2x-5y)

Correct answer:

\displaystyle (8+ 2x-5y) (8- 2x+5y)

Explanation:

\displaystyle 64 - 4x^{2} + 20xy - 25y^{2} can be grouped as follows:

\displaystyle 64 - \left ( 4x^{2} - 20xy + 25y^{2} \right )

\displaystyle 4x^{2} - 20xy + 25y^{2} is a perfect square trinomial, since 

\displaystyle 2\cdot \sqrt{4x^{2}} \cdot \sqrt{25y^{2}} = 2 \cdot 2x \cdot 5y = 20xy

 

\displaystyle 64 - \left ( 4x^{2} - 20xy + 25y^{2} \right )

\displaystyle = 8^{2} - \left ( 2x-5y \right )^{2}

Now use the difference of squares pattern:

\displaystyle = 8^{2} - \left ( 2x-5y \right )^{2}

\displaystyle =\left [ 8+ \left ( 2x-5y \right ) \right ]\left [ 8- \left ( 2x-5y \right ) \right ]

\displaystyle = (8+ 2x-5y) (8- 2x+5y)

Example Question #1 : Understanding Factoring

Factor completely:

\displaystyle x^{5} + 3x^{4} + 2x^{3}+ 5x ^{2} + 15x + 10

Possible Answers:

\displaystyle \left (x^{3}+5 \right ) \left ( x+1\right ) \left ( x+2\right )

\displaystyle \left (x^{3}+5x ^{2}+ 5 \right ) \left ( x+1\right ) \left ( x+2\right )

\displaystyle \left (x^{3}-5 \right ) \left ( x-1\right ) \left ( x+2\right )

\displaystyle \left (x^{3}+5x+ 5 \right ) \left ( x+1\right ) \left ( x+2\right )

\displaystyle \left (x^{3}-5 \right ) \left ( x-2\right ) \left ( x+1\right )

Correct answer:

\displaystyle \left (x^{3}+5 \right ) \left ( x+1\right ) \left ( x+2\right )

Explanation:

Group the first three terms and the last three terms, then factor out a GCF from each grouping:

\displaystyle x^{5} + 3x^{4} + 2x^{3}+ 5x ^{2} + 15x + 10

\displaystyle =\left ( x^{5} + 3x^{4} + 2x^{3} \right )+\left ( 5x ^{2} + 15x + 10 \right )

\displaystyle =x^{3} \left ( x^{2} + 3x + 2 \right )+5 \left ( x^{2} + 3x + 2 \right )

\displaystyle =\left (x^{3}+5 \right )\left ( x^{2} + 3x + 2 \right )

We try to factor \displaystyle x^{3}+5 as a sum of cubes; however, 5 is not a perfect cube, so the binomial is a prime.

To factor out \displaystyle x^{2} + 3x + 2, we try to factor it into \displaystyle (x + ?)(x + ?), replacing the question marks with two integers whose product is 2 and whose sum is 3. These integers are 1 and 2, so 

\displaystyle x^{2} + 3x + 2 = \left ( x+1\right ) \left ( x+2\right )

The original polynomial has \displaystyle \left (x^{3}+5 \right ) \left ( x+1\right ) \left ( x+2\right ) as its factorization.

Example Question #5 : Understanding Factoring

Factor completely: \displaystyle x^{5} - 3x^{4} + x^{3}+ 8x ^{2} - 24x + 8

Possible Answers:

\displaystyle \left ( x + 2 \right )^{3}( x^{2} - 3x +1)

\displaystyle \left ( x+2\right ) ^{2} \left ( x - 2 \right )( x^{2} - 3x -1)

\displaystyle \left ( x - 2 \right )^{3}( x^{2} - 3x -1)

\displaystyle \left ( x+2\right ) \left ( x - 2 \right )^{2}( x^{2} - 3x +1)

\displaystyle \left ( x+2\right ) \left ( x^{2} - 2 x + 4 \right )( x^{2} - 3x +1)

Correct answer:

\displaystyle \left ( x+2\right ) \left ( x^{2} - 2 x + 4 \right )( x^{2} - 3x +1)

Explanation:

Group the first three terms and the last three terms, then factor out a GCF from each grouping:

\displaystyle x^{5} - 3x^{4} + x^{3}+ 8x ^{2} - 24x + 8

\displaystyle =( x^{5} - 3x^{4} + x^{3} ) +( 8x ^{2} - 24x + 8 )

\displaystyle =x^{3} ( x^{2} - 3x + 1 ) +8 ( x^{2} - 3x + 1 )

\displaystyle = \left ( x^{3} +8 \right )( x^{2} - 3x +1)

\displaystyle x^{3} +8 is the sum of cubes and can be factored using this pattern: 

\displaystyle x^{3} +8

\displaystyle = x^{3} +2^{3}

\displaystyle = \left ( x+2\right ) \left ( x^{2} - 2 \cdot x + 2^{2} \right )

\displaystyle = \left ( x+2\right ) \left ( x^{2} - 2 x + 4 \right )

We try to factor out the quadratic trinomial as \displaystyle (x + ?)(x + ?), replacing the question marks with integers whose product is 1 and whose sum is \displaystyle -3. These integers do not exist, so the trinomial is prime.

The factorization is therefore

\displaystyle = \left ( x+2\right ) \left ( x^{2} - 2 x + 4 \right )( x^{2} - 3x +1)

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors