GMAT Math : GMAT Quantitative Reasoning

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #42 : Simplifying Algebraic Expressions

If you were to write \displaystyle (x-3)^{10} in expanded form in descending order of degree, what would the third term be?

Possible Answers:

\displaystyle 810x^{8}

\displaystyle 405x^{8}

\displaystyle 45x^{8}

\displaystyle 243x^{8}

\displaystyle 945x^{8}

Correct answer:

\displaystyle 405x^{8}

Explanation:

By the Binomial Theorem, if you expand \displaystyle (A+B)^{n}, writing the result in standard form, the \displaystyle r \mathrm{th} term (with the terms being numbered from 0 to \displaystyle n ) is

\displaystyle C(n,r)A^{n-r}B^{r}

Set \displaystyle A=x\displaystyle B=-3\displaystyle n=10, and \displaystyle r=2 (again, the terms are numbered 0 through \displaystyle n, so the third term is numbered 2) to get

\displaystyle C(10,2)\cdot x^{10-2}\cdot (-3)^{2}

\displaystyle =\frac{10!}{8! 2!}\cdot x^{8}\cdot 9

\displaystyle =45\cdot x^{8}\cdot 9

\displaystyle =405x^{8}

Example Question #1361 : Problem Solving Questions

Assume that \displaystyle x,y \neq 0.

Which of the following expressions is equal to the following expression?

\displaystyle \frac{(x+y)^{2} +(x - y)^{2}}{x^{2}y^{2}} 

Possible Answers:

\displaystyle 4x^{2}y^{2}

\displaystyle \frac{2 }{x^{2}y} + \frac{2 }{xy^{2}}

\displaystyle 4

\displaystyle \frac{2 }{x^{2}} + \frac{2 }{y^{2}}

\displaystyle \frac{2 }{x} + \frac{2 }{y}

Correct answer:

\displaystyle \frac{2 }{x^{2}} + \frac{2 }{y^{2}}

Explanation:

\displaystyle \frac{(x+y)^{2} +(x - y)^{2}}{x^{2}y^{2}}

\displaystyle =\frac{(x^{2}+2xy+y^{2}) + (x^{2}-2xy+y^{2}) }{x^{2}y^{2}}

\displaystyle =\frac{x^{2}+x^{2}+2xy-2xy+y^{2}+y^{2} }{x^{2}y^{2}}

\displaystyle =\frac{2x^{2}+2y^{2} }{x^{2}y^{2}}

\displaystyle =\frac{2x^{2} }{x^{2}y^{2}} + \frac{2y^{2} }{x^{2}y^{2}}

\displaystyle =\frac{2 }{y^{2}} + \frac{2 }{x^{2}} = \frac{2 }{x^{2}} + \frac{2 }{y^{2}}

Example Question #1362 : Problem Solving Questions

For what value of \displaystyle \small N would the following equation have no solution?

\displaystyle \small \small 3 (4x - 7) + 12 = 2 (5x - 3) + N (x - 3)

Possible Answers:

\displaystyle \small N= 2

The equation must always have at least one solution regardless of the value of  \displaystyle \small N.

\displaystyle \small N= -2

\displaystyle \small \small N= -1

\displaystyle \small \small N= 1

Correct answer:

\displaystyle \small N= 2

Explanation:

Simplify both sides of the equation as much as possible, and solve for \displaystyle \small x in the equation in terms of \displaystyle \small N:

\displaystyle \small \small \small 3 (4x - 7) + 12 = 2 (5x - 3) + N (x - 3)

\displaystyle \small 3 \cdot 4x - 3 \cdot 7 + 12 = 2 \cdot 5x - 2 \cdot 3 + N \cdot x - N \cdot 3

\displaystyle \small 12x - 21 + 12 = 10x - 6 + Nx - 3N

\displaystyle \small 12x - 9 = (10+N)x + (- 6 - 3N)

\displaystyle \small \small 12x - (10+N)x = (- 6 - 3N) + 9

\displaystyle \small (2-N)x = 3 - 3N

\displaystyle \small x = \frac{3 - 3N}{2 -N}

\displaystyle \small x has exactly one solution unless the denominator is 0 - that is, \displaystyle \small N = 2. We make sure that this value renders no solution by substituting:

\displaystyle \small \small \small 3 (4x - 7) + 12 = 2 (5x - 3) + N (x - 3)

\displaystyle \small \small \small \small 3 (4x - 7) + 12 = 2 (5x - 3) + 2 (x - 3)

\displaystyle \small 12x - 21 + 12 = 10x - 6 + 2x - 6

\displaystyle \small 12x - 9 = 12x - 12

\displaystyle \small - 9 = - 12

The equation has no solution, and \displaystyle \small N = 2 is the correct answer.

Example Question #1 : Solving Linear Equations With One Unknown

Solve for \displaystyle n:

\displaystyle n+2=-14-n

Possible Answers:

\displaystyle -7

\displaystyle 16

\displaystyle -16

\displaystyle -8

Correct answer:

\displaystyle -8

Explanation:

\displaystyle n+2=-14-n

\displaystyle n+n=-14-2

\displaystyle 2n=-16

\displaystyle n=-8

Example Question #1363 : Problem Solving Questions

Solve for \displaystyle x:

\displaystyle -6x-20=-2x+4(1-3x)

Possible Answers:

\displaystyle 6

\displaystyle -6

\displaystyle 20

\displaystyle 3

Correct answer:

\displaystyle 3

Explanation:

\displaystyle -6x-20=-2x+4(1-3x)

\displaystyle -6x-20=-2x+4-12x

\displaystyle -6x-20=-14x+4

\displaystyle -6x+14x=4+20

\displaystyle 8x=24

\displaystyle x=3

Example Question #1 : Linear Equations, One Unknown

Solve for \displaystyle b:

\displaystyle -14+6b+7-2b=1+5b

Possible Answers:

\displaystyle 12

\displaystyle 5

\displaystyle 14

\displaystyle -8

Correct answer:

\displaystyle -8

Explanation:

\displaystyle -14+6b+7-2b=1+5b

\displaystyle -7+4b=1+5b

\displaystyle 4b-5b=1+7

\displaystyle -b=8

\displaystyle b=-8

Example Question #1 : Linear Equations, One Unknown

What is the midpoint coordinate of \displaystyle (1,4) and \displaystyle (7,10)?

Possible Answers:

\displaystyle (6,6)

\displaystyle (3,3)

\displaystyle (7,4)

\displaystyle (4,7)

Correct answer:

\displaystyle (4,7)

Explanation:

Midpoint formula:

\displaystyle \left(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}\right)

\displaystyle (1,4)\ and\ (7,10)

\displaystyle \left(\frac{1+7}{2},\frac{4+10}{2}\right)

\displaystyle \left(\frac{8}{2},\frac{14}{2}\right)

\displaystyle (4,7)

Example Question #1364 : Problem Solving Questions

What is the midpoint coordinate of \displaystyle (1,2) and \displaystyle (5,2)?

Possible Answers:

\displaystyle (3,2)

\displaystyle (2,0)

\displaystyle (2,3)

\displaystyle (6,4)

Correct answer:

\displaystyle (3,2)

Explanation:

Midpoint formula:

\displaystyle \left(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}\right)

\displaystyle (1,2)\ and\ (5,2)

\displaystyle \left(\frac{1+5}{2},\frac{2+2}{2}\right)

\displaystyle \left(\frac{6}{2},\frac{4}{2}\right)

\displaystyle (3,2)

Example Question #1 : Solving Linear Equations With One Unknown

What is the midpoint coordinate of \displaystyle (-2,-1) and \displaystyle (-8,7)?

Possible Answers:

\displaystyle (5,3)

\displaystyle (3,5)

\displaystyle (-5,3)

\displaystyle (3,-5)

Correct answer:

\displaystyle (-5,3)

Explanation:

Midpoint formula:

\displaystyle \left(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}\right)

\displaystyle (-2,-1)\ and\ (-8,7)

\displaystyle \left(\frac{-2+-8}{2},\frac{-1+7}{2}\right)

\displaystyle \left(\frac{-10}{2},\frac{6}{2}\right)

\displaystyle (-5,3)

Example Question #1 : Solving Linear Equations With One Unknown

Solve the following equation:

\displaystyle 2\left | x-5\right |+16=30.

Possible Answers:

\displaystyle x = {-9 : 16}

\displaystyle x = {0 ; 10}

\displaystyle x = {-7 ; 7}

\displaystyle x = {-2 ; 12}

\displaystyle x = 2

Correct answer:

\displaystyle x = {-2 ; 12}

Explanation:

We start by isolating the absolute value expression:

\displaystyle 2\left | x-5\right |+16=30 \Leftrightarrow 2\left | x-5\right |=30-16=14\Leftrightarrow \left | x-5\right |=7

This gives us two cases when we remove the absolute value:

\displaystyle x - 5 = 7 and \displaystyle x - 5 = -7

Then we solve for each case:

\displaystyle x - 5 = 7 \Rightarrow x = 7 + 5 \Rightarrow x= 12

\displaystyle x - 5 = -7 \Rightarrow x = -7 + 5\Rightarrow x= -2

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors