GMAT Math : Triangles

Study concepts, example questions & explanations for GMAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #581 : Problem Solving Questions

 is an exterior angle of  at .

Is  an acute triangle, a right triangle, or an obtuse triangle?

Statement 1:  is acute.

Statement 2:  and  are both acute.

Possible Answers:

BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.

STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.

EITHER STATEMENT ALONE provides sufficient information to answer the question.

BOTH STATEMENTS TOGETHER provide sufficient information to answer the question, but NEITHER STATEMENT ALONE provides sufficient information to answer the question.

STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.

Correct answer:

STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.

Explanation:

Exterior angle  forms a linear pair with its interior angle . Either both are right, or one is acute and one is obtuse. From Statement 1 alone, since  is acute,  is obtuse, and  is an obtuse triangle.

Statement 2 alone is insufficient. Every triangle has at least two acute angles, and Statement 2 only establishes that   and  are both acute; the third angle, , can be acute, right, or obtuse, so the question of whether  is an acute, right, or obtuse triangle is not settled.

Example Question #11 : Calculating An Angle In An Acute / Obtuse Triangle

, and  are all exterior angles of  with vertices , and , respectively. 

Is  an acute triangle, a right triangle, or an obtuse triangle?

Statement 1: , and  are all obtuse angles.

Statement 2: .

Note: For purposes of this problem, , , and  will refer to the interior angles of the triangle at these vertices.

Possible Answers:

BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.

EITHER STATEMENT ALONE provides sufficient information to answer the question.

BOTH STATEMENTS TOGETHER provide sufficient information to answer the question, but NEITHER STATEMENT ALONE provides sufficient information to answer the question.

STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.

STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.

Correct answer:

STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.

Explanation:

Assume Statement 1 alone. An exterior angle of a triangle forms a linear pair with the interior angle of the triangle of the same vertex. The two angles, whose measures total , must be two right angles or one acute angle and one obtuse angle. Since , and  are all obtuse angles, it follows that their respective interior angles - the three angles of  - are all acute. This makes  an acute triangle.

Statement 2 alone provides insufficient information to answer the question. For example, if  and  each measure  and  measures , the sum of the angle measures is  and  are congruent, and  is an obtuse angle (measuring more than ); this makes  an obtuse triangle. But  if , and  each measure , the sum of the angle measures is again  and  are again congruent, and all three angles are acute (measuring less than ); this makes  an acute triangle. 

Example Question #21 : Calculating An Angle In An Acute / Obtuse Triangle

The measures of the angles of one triangle, in degrees, are .

The measures of the angles of a second triangle, in degrees, are .

What is ?

Possible Answers:

Correct answer:

Explanation:

The degree measures of the angles of a triangle add up to a total of 180, so we can set up the following equations:

From the first triangle:

From the second:

These equations form a system of equations that can be solved:

            

, so

and .

 

 

Example Question #1 : Calculating The Length Of The Hypotenuse Of An Acute / Obtuse Triangle

The largest angle of an obtuse isosceles triangle has a measure of  .  If the length of the two equivalent sides is  ,  what is the length of the hypotenuse?

Possible Answers:

Correct answer:

Explanation:

The height of the obtuse isosceles triangle bisects the    angle and forms two congruent right triangles. The hypotenuse of each of these triangles is either side of equivalent length, and we can see that the base of either triangle makes up half of the hypotenuse of the obtuse isosceles triangle. Because we know the angle opposite each base is half of  ,  or  ,  we can use the sine of this angle to find the length of the base. As there are two congruent right triangles that make up the obtuse isosceles triangle, the length of either base makes up half of the overall hypotenuse, so we then multiply the result by    to obtain the final answer. In the following solution,    is the length of the base of one of the right triangles,    is the length of the two equivalent sides, and    is the length of the hypotenuse:

Example Question #592 : Problem Solving Questions

What is the area, to the nearest whole square inch, of a triangle with sides 12, 13, and 15 inches?

Possible Answers:

None of the other answers are correct.

Correct answer:

Explanation:

Use Heron's formula:

where , and

Example Question #101 : Triangles

Calculate the area of the triangle (not drawn to scale).

Possible Answers:

Correct answer:

Explanation:

In this problem, the base is 12 and the height is 6. Therefore:

Example Question #2 : Calculating The Area Of An Acute / Obtuse Triangle

Arrow

Note: Figure NOT drawn to scale.

What is the area of the above figure?

Possible Answers:

More information is needed to answer this question.

Correct answer:

Explanation:

The figure is a composite of a rectangle and a triangle, as shown:

Split_arrow

The rectangle has area 

The triangle has area 

The total area of the figure is 

Example Question #592 : Gmat Quantitative Reasoning

Which of the following cannot be the measure of the vertex angle of an isosceles triangle?

Possible Answers:

Each of the other choices can be the measure of the vertex angle of an isosceles triangle.

Correct answer:

Each of the other choices can be the measure of the vertex angle of an isosceles triangle.

Explanation:

The only restriction on the measure of the vertex angle of an isosceles triangle is the restriction on any angle of a triangle - that it fall between  and , noninclusive. If  is any number in that range, each base angle, the two being congruent, will measure , which will fall in the acceptable range.

Since all of these measures fall in that range, the correct response is that all are allowed.

Example Question #1 : Calculating The Area Of An Acute / Obtuse Triangle

What is the area of the triangle on the coordinate plane formed by the -axis and the lines of the equations  and  ?

Possible Answers:

Correct answer:

Explanation:

The easiest way to solve this is to graph the three lines and to observe the dimensions of the resulting triangle. It helps to know the coordinates of the three points of intersection, which we can do as follows:

The intersection of  and the -axis - that is, the line  can be found with some substitution:

The lines intersect at 

 

The intersection of  and the  -axis can be found the same way:

 

These lines intersect at 

 

The intersection of  and   can be found via the substitution method:

The lines intersect at 

 

The triangle therefore has these three vertices. It is shown below.

Triangle

As can be seen, it is a triangle with base 9 and height 12, so its area is 

Example Question #3 : Calculating The Area Of An Acute / Obtuse Triangle

What is the area of a triangle on the coordinate plane with its vertices on the points  ?

Possible Answers:

Correct answer:

Explanation:

The vertical segment connecting  and  can be seen as the base of this triangle; this base has length . The height is the perpendicular (horizontal) distance from  to this segment, which is 6, the same as the -coordinate of this point. The area of the triangle is therefore 

.

Tired of practice problems?

Try live online GMAT prep today.

1-on-1 Tutoring
Live Online Class
1-on-1 + Class
Learning Tools by Varsity Tutors