All GMAT Math Resources
Example Questions
Example Question #761 : Data Sufficiency Questions
Consider linear functions and .
I) at the point .
II)
Is the point on the line ?
Either statement is sufficient to answer the question.
Statement II is sufficient to answer the question, but statement I is not sufficient to answer the question.
Both statements are needed to answer the question.
Neither statement is sufficient to answer the question. More information is needed.
Statement I is sufficient to answer the question, but statement II is not sufficient to answer the question.
Both statements are needed to answer the question.
Consider linear functions h(t) and g(t).
I) at the point
II)
Is the point on the line h(t)?
We can use II) and I) to find the slope of h(t)
Recall that perpendicular lines have opposite reciprocal slope. Thus, the slope of h(t) must be
Next, we know that h(t) must pass through (6,4), so lets us that to find the y-intercept:
Next, check if (10,4) is on h(t) by plugging it in.
So, the point is not on the line, and we needed both statements to know.
Example Question #2 : Dsq: Calculating Whether Point Is On A Line With An Equation
Line m is perpendicular to the line l which is defined by the equation . What is the value of ?
(1) Line m passes through the point .
(2) Line l passes through the point .
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
Statement 1 allows you to define the equation of line m, but does not provide enough information to solve for . There are still 3 variables and only two different equations to solve.
if , statement 2 supplies enough information to solve for b by substitution if is on the line.
Example Question #41 : Lines
Find the equation of linear function given the following statements.
I)
II) intercepts the x-axis at 9.
Statement I is sufficient to answer the question, but Statement II is not sufficient to answer the question.
Either statement is sufficient to answer the question.
Statement II is sufficient to answer the question, but Statement I is not sufficient to answer the question.
Both statements are needed to answer the question.
Neither statement is sufficient to answer the question. More information is needed.
Both statements are needed to answer the question.
To find the equation of a linear function, we need some combination of slope and a point.
Statement I gives us a clue to find the slope of the desired function. It must be the opposite reciprocal of the slope of . This makes the slope of equal to
Statement II gives us a point on our desired function, .
Using slope-intercept form, we get the following:
So our equation is as follows
Example Question #2871 : Gmat Quantitative Reasoning
There are two lines in the xy-coordinate plane, a and b, both with positive slopes. Is the slope of a greater than the slope of b?
1)The square of the x-intercept of a is greater than the square of the x-intercept of b.
2) Lines a and b have an intersection at
Neither of the statements, together or separate, is sufficient.
Either of the statements is sufficient.
Statement 1 alone is sufficient.
Together the two statements are sufficient.
Statement 2 alone is sufficient.
Neither of the statements, together or separate, is sufficient.
Given that the square of a negative is still positive, it is possible for a to have an x-intercept that is negative, while still having a positive slope. The example above shows how the square of the x-intercept for line a could be greater, while having still giving line a a slope that is less than that of b.
Example Question #651 : Geometry
Line j passes through the point . What is the equation of line j?
1) Line j is perpindicular to the line defined by
2) Line j has an x-intercept of
Statement 1 alone is sufficient.
Statement 2 alone is sufficient.
Together, the two statements are sufficient.
Neither of the statements, separate or together, is sufficient.
Either of the statements is sufficient.
Either of the statements is sufficient.
Either statement is sufficient.
Line j, as a line, has an equation of the form
Statement 1 gives the equation of a perpindicular line, so the slopes of the two lines are negative reciprocals of each other:
Statement 2 allows the slope to be found using rise over run:
Then, since the x-intercept is known:
Example Question #3 : Dsq: Calculating The Equation Of A Line
Find the equation for linear function .
I) and
II)
Neither statement is sufficient to answer the question. More information is needed.
Statement I is sufficient to answer the question, but statement II is not sufficient to answer the question.
Either statement is sufficient to answer the question.
Statement II is sufficient to answer the question, but statement I is not sufficient to answer the question.
Both statements are needed to answer the question.
Both statements are needed to answer the question.
Find the equation for linear function p(x)
I) and
II)
To begin:
I) Tells us that p(x) must have a slope of 16
II) Tells us a point on p(x). Plug it in and solve for b:
Example Question #764 : Data Sufficiency Questions
Give the equation of a line.
Statement 1: The line interects the graph of the equation on the -axis.
Statement 2: The line interects the graph of the equation on the -axis.
BOTH STATEMENTS TOGETHER provide sufficient information to answer the question, but NEITHER STATEMENT ALONE provides sufficient information to answer the question.
BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.
STATEMENT 2 ALONE provides sufficient information to answer the question, but STATEMENT 1 ALONE does NOT provide sufficient information to answer the question.
STATEMENT 1 ALONE provides sufficient information to answer the question, but STATEMENT 2 ALONE does NOT provide sufficient information to answer the question.
EITHER STATEMENT ALONE provides sufficient information to answer the question.
BOTH STATEMENTS TOGETHER do NOT provide sufficient information to answer the question.
Assume both statements to be true. Then the line shares its - and -intercepts with the graph of , which is a parabola. The common -intercept can be found by setting and solving for :
,
making the -intercept of the parabola, and that of the line, .
The common -intercept can be found by setting and solving for :
, in which case , or
, in which case ,
The parabola therefore has two -intercepts, and , so it is not clear which one is the -intercept of the line. Therefore, the equation of the line is also unclear.
Example Question #1 : Dsq: Calculating The Slope Of A Line
Is the slope of the line positve, negative, zero, or undefined?
Statement 1:
Statement 2:
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
, in slope-intercept form, is
Therefore, the sign of is the sign of the slope.
The first statement means that is positive - all that means is that both and are nonzero and of like sign. can be either positive or negative, and consequently, so can slope .
The second statement - that is positive - makes , the sign of the slope, negative.
Example Question #766 : Data Sufficiency Questions
Does a given line with intercepts have positive slope or negative slope?
Statement 1:
Statement 2:
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
BOTH statements TOGETHER are insufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
The slope of a line through and is
From Statement 1 alone, we can tell that
,
so we know the sign of the slope.
From Statement 2 alone, we can tell that
But this can be positive or negative - for example:
but
Example Question #43 : Lines
Does a given line with intercepts have positive slope or negative slope?
Statement 1:
Statement 2:
BOTH statements TOGETHER are insufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
Statement 1 ALONE is sufficient to answer the question, but Statement 2 ALONE is NOT sufficient to answer the question.
EITHER statement ALONE is sufficient to answer the question.
Statement 2 ALONE is sufficient to answer the question, but Statement 1 ALONE is NOT sufficient to answer the question.
BOTH statements TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient to answer the question.
The slope of a line through and is
If and have the same sign, then , making the slope negative; if and have the same sign, then , making the slope positive.
Statement 1 is not enough to determine the sign of .
Case 1:
Case 2:
So if we only know Statement 1, we do not know whether and have the same sign, and, subsequently, we do not know the sign of slope . A similar argument can be made that Statement 2 provides insufficient information.
If we know both statements, we can solve the system of equations as follows:
Therefore, we know and have unlike sign and .