GED Math : Simplifying, Distributing, and Factoring

Study concepts, example questions & explanations for GED Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Algebra

Multiply:

\displaystyle \small -x(4x+2)=

Possible Answers:

\displaystyle \small 4x^2-2x

\displaystyle \small -4x^2-2x

\displaystyle \small -4x^2+2x

\displaystyle \small 4x^2+2x

Correct answer:

\displaystyle \small -4x^2-2x

Explanation:

\displaystyle \small -x(4x+2)=(-x)(4x)+(-x)(2)=-4x^2+(-2x)=-4x^2-2x

Example Question #1 : Algebra

Factor:

\displaystyle \small x^2+5x+4

Possible Answers:

\displaystyle \small (x+5)(x-1)

\displaystyle \small (x-5)(x+1)

\displaystyle \small (x+4)(x+1)

\displaystyle \small (x-4)(x-1)

Correct answer:

\displaystyle \small (x+4)(x+1)

Explanation:

\displaystyle \small x^2+5x+4=(x+a)(x+b)

where

\displaystyle \small a+b=5\ and\ ab=4

The numbers \displaystyle \small 4 and \displaystyle \small 1 fit those criteria. Therefore,

\displaystyle \small x^2+5x+4=(x+1)(x+4)

You can double check the answer using the FOIL method

Example Question #1 : Algebra

Which of the following is not a prime factor of \displaystyle y^{4}- 81 ?

Possible Answers:

\displaystyle y + 3

\displaystyle y^{2}-9

\displaystyle y - 3

\displaystyle y^{2}+9

Correct answer:

\displaystyle y^{2}-9

Explanation:

Factor \displaystyle y^{4}- 81 all the way to its prime factorization.

\displaystyle y^{4}- 81 can be factored as the difference of two perfect square terms as follows:

\displaystyle y^{4}- 81

\displaystyle =\left ( y^{2} \right )^{2} - 9^{2}

\displaystyle =\left ( y^{2} + 9 \right )\left ( y^{2} - 9 \right )

\displaystyle y^{2} + 9 is a factor, and, as the sum of squares, it is a prime. \displaystyle y^{2} - 9 is also a factor, but it is not a prime factor - it can be factored as the difference of two perfect square terms. We continue:

\displaystyle \left ( y^{2} + 9 \right )\left ( y^{2} - 9 \right )

\displaystyle =\left ( y^{2} + 9 \right )\left ( y^{2} - 3^{2} \right )

\displaystyle =\left ( y^{2} + 9 \right )\left (y+3 \right )\left ( y-3\right )

Therefore, all of the given polynomials are factors of \displaystyle y^{4}- 81, but \displaystyle y^{2} - 9 is the correct choice, as it is not a prime factor.

Example Question #1 : Algebra

Which of the following is a prime factor of \displaystyle n^{4} + 30n^{2} +225 ?

Possible Answers:

\displaystyle n^{2}+75

\displaystyle n^{2}+15

\displaystyle n^{2}+25

\displaystyle n^{2}+9

Correct answer:

\displaystyle n^{2}+15

Explanation:

\displaystyle n^{4} + 30n^{2} +225 can be seen to fit the pattern 

\displaystyle A ^{2} + 2AB + B^{2}:

\displaystyle n^{4} + 30n^{2} +225 = \left (n^{2} \right ) ^{2}+ 2 \cdot n^{2} \cdot 15 + 15 ^{2}

where \displaystyle A = n^{2} , B = 15

\displaystyle A ^{2}+2AB + B^{2} can be factored as \displaystyle (A+B ) ^{2}, so

 \displaystyle n^{4} + 30n^{2} +225 = \left (n^{2} \right ) ^{2}+ 2 \cdot n^{2} \cdot 15 + 15 ^{2} = (n^{2}+15)^{2}.

\displaystyle n^{2}+15 does  not fit into any factorization pattern, so it is prime, and the above is the complete factorization of the polynomial. Therefore, \displaystyle n^{2}+15 is the correct choice.

Example Question #551 : Ged Math

Divide: 

\displaystyle \left ( 12 x ^{5} + 9x^{3}+ 6x^{2}+36 x \right ) \div 6x 

Possible Answers:

\displaystyle 6x ^{4} + 3x ^{2} +x + 30

\displaystyle 2x ^{4} + \frac{ 3 }{2 }x ^{2} + x+ 6

\displaystyle 6x ^{4} + 3x ^{2} + 30

\displaystyle 2x ^{4} +3x ^{2} + 6

Correct answer:

\displaystyle 2x ^{4} + \frac{ 3 }{2 }x ^{2} + x+ 6

Explanation:

Divide termwise:

\displaystyle \left ( 12 x ^{5} + 9x^{3}+ 6x^{2}+36 x \right ) \div 6x

\displaystyle = \frac{ 12 x ^{5} + 9x^{3}+ 6x^{2}+36 x }{6x}

\displaystyle = \frac{ 12 x ^{5} }{6x} + \frac{ 9x^{3} }{6x} + \frac{ 6x^{2} }{6x}+ \frac{ 36 x }{6x}

\displaystyle = \frac{ 12 }{6} x ^{5-1} + \frac{ 9 }{6 }x ^{3-1} + \frac{ 6 }{6}x^{2-1}+ \frac{ 36 }{6 }

\displaystyle =2x ^{4} + \frac{ 3 }{2 }x ^{2} + x+ 6

Example Question #5 : Simplifying, Distributing, And Factoring

Multiply:

\displaystyle \left (100Y^{2}+ 110Y + 121 \right )(10Y-11)

Possible Answers:

\displaystyle 1,000Y^{3}+ 1,100Y^{2}-1,210Y - 1,331

\displaystyle 1,000Y^{3}- 1,331

\displaystyle 1,000Y^{3}- 3,300Y^{2}+3,630Y - 1,331

\displaystyle 1,000Y^{3}- 1,100Y^{2}+1,210Y - 1,331

Correct answer:

\displaystyle 1,000Y^{3}- 1,331

Explanation:

\displaystyle \left (100Y^{2}+ 110Y + 121 \right )(10Y-11)

\displaystyle =\left [\left (10Y \right) ^{2}+ 10Y \cdot 11 + 11^{2} \right] (10Y-11)

This product fits the difference of cubes pattern, where \displaystyle A = 10Y, B = 11:

\displaystyle (A^{2}+AB +B^{2})(A-B) = A^{3}-B^{3}

so

\displaystyle \left [\left (10Y \right) ^{2}+ 10Y \cdot 11 + 11^{2} \right] (10Y-11)

\displaystyle = \left ( 10Y\right )^{3} -11^{3} = 1,000Y^{3}-1,331

Example Question #6 : Single Variable Algebra

Give the value of \displaystyle N that makes the polynomial \displaystyle 121x^{2}- Nx + 49 the square of a linear binomial. 

Possible Answers:

\displaystyle N = 154

\displaystyle N = 77

\displaystyle N = 231

\displaystyle N = 198

Correct answer:

\displaystyle N = 154

Explanation:

A quadratic trinomial is a perfect square if and only if takes the form

\displaystyle A^{2} \pm 2AB + B^{2} for some values of \displaystyle A and \displaystyle B.

\displaystyle 121x^{2}- Nx + 49= (11x)^{2} - Nx + 7^{2}, so 

\displaystyle A = 11x and \displaystyle B = 7

For \displaystyle 121x^{2}- Nx + 49 to be a perfect square, it must hold that 

\displaystyle Nx = 2AB = 2 \cdot 11x \cdot 7 = 154x,

so \displaystyle N = 154. This is the correct choice.

Example Question #1 : Single Variable Algebra

Which of the following is a factor of the polynomial \displaystyle x^{4}-13x^{2}+ 36 ?

Possible Answers:

\displaystyle x-2

\displaystyle x-9

\displaystyle x - 4

\displaystyle x-1

Correct answer:

\displaystyle x-2

Explanation:

Perhaps the easiest way to identify the factor is to take advantage of the factor theorem, which states that \displaystyle x-a is a factor of polynomial \displaystyle P(x) if and only if \displaystyle P(a)= 0. We substitute 1, 2, 4, and 9 for \displaystyle x in the polynomial to identify the factor.

\displaystyle x=1:

\displaystyle 1^{4}-13 \cdot 1^{2}+ 36

\displaystyle = 1 - 13 + 36

\displaystyle = 24

 

\displaystyle x=2:

 \displaystyle 2^{4}-13 \cdot 2^{2}+ 36

\displaystyle = 16- 13 \cdot 4 + 36

\displaystyle = 16 -52 + 36

\displaystyle = 0

 

\displaystyle x =4:

\displaystyle 4^{4}-13 \cdot 4^{2}+ 36

\displaystyle = 256- 13 \cdot 16 + 36

\displaystyle = 256 -208 +36

\displaystyle = 84

 

\displaystyle x=9:

\displaystyle 9^{4}-13 \cdot 9^{2}+ 36

\displaystyle = 6,561- 13 \cdot 81 + 36

\displaystyle = 6,561- 1,053+ 36

\displaystyle = 5,544

 

Only \displaystyle x = 2 makes the polynomial equal to 0, so among the choices, only \displaystyle x-2 is a factor.

Example Question #2 : Algebra

Which of the following is a prime factor of \displaystyle x^{6} +1 ? 

Possible Answers:

\displaystyle x^{2}+x+1

\displaystyle x^{2}+1

\displaystyle x+1

\displaystyle x^{2}-x+1

Correct answer:

\displaystyle x^{2}+1

Explanation:

\displaystyle x^{6} +1 is the sum of two cubes:

\displaystyle x^{6} +1 =\left ( x^{2} \right ) ^{3}+1^{3}

As such, it can be factored using the pattern 

\displaystyle A^{3}+ B^{3}= (A+B)(A^{2}-AB+B^{2})

where \displaystyle A = x^{2}, B = 1;

\displaystyle x^{6} +1 =\left ( x^{2} \right ) ^{3}+1^{3}

\displaystyle = (x^{2}+1)((x^{2})^{2}-x^{2} \cdot 1 + 1^{2})

\displaystyle = (x^{2}+1)(x^{4}-x^{2} + 1)

The first factor,as the sum of squares, is a prime.

We try to factor the second by noting that it is "quadratic-style" based on \displaystyle x^{2}. and can be written as

\displaystyle = (x^{2})^{2}-x^{2} + 1;

we seek to factor it as \displaystyle (x^{2}+\; \; \; )(x^{2}+\; \; \; )

 

We want a pair of integers whose product is 1 and whose sum is \displaystyle -1. These integers do not exist, so \displaystyle x^{4}-x^{2} + 1 is a prime. 

 

\displaystyle (x^{2}+1)(x^{4}-x^{2} + 1) is the prime factorization and the correct response is \displaystyle x^{2}+1.

Example Question #3 : Algebra

Which of the following is a factor of the polynomial \displaystyle x^{6} - 66x^{3} + 128

Possible Answers:

\displaystyle x+2

\displaystyle x+4

\displaystyle x-4

\displaystyle x-2

Correct answer:

\displaystyle x-4

Explanation:

Perhaps the easiest way to identify the factor is to take advantage of the factor theorem, which states that \displaystyle x-a is a factor of polynomial \displaystyle P(x) if and only if \displaystyle P(a)= 0. We substitute \displaystyle \pm2 and \displaystyle \pm 4 for \displaystyle x in the polynomial to identify the factor.

 

\displaystyle x = 2:

\displaystyle x^{6} - 66x^{3} + 128

\displaystyle 2^{6} - 66 \cdot 2^{3} + 128

\displaystyle = 64 - 66 \cdot 8 + 128

\displaystyle = 64 - 528 + 128

\displaystyle = -336

 

\displaystyle x = -2:

\displaystyle x^{6} - 66x^{3} + 128

\displaystyle \left (-2 \right )^{6} - 66 \cdot \left (-2 \right )^{3} + 128

\displaystyle = 64 - 66 \cdot\left ( -8 \right )+ 128

\displaystyle = 64 + 528 + 128

\displaystyle = 720

 

\displaystyle x = 4:

\displaystyle x^{6} - 66x^{3} + 128

\displaystyle 4^{6} - 66 \cdot 4^{3} + 128

\displaystyle = 4,096- 66 \cdot 64 + 128

\displaystyle = 4,096- 4,224 + 128

\displaystyle = 0

 

\displaystyle x = -4:

\displaystyle x^{6} - 66x^{3} + 128

\displaystyle \left (-4 \right )^{6} - 66 \cdot \left (-4 \right )^{3} + 128

\displaystyle = 4,096- 66 \cdot\left ( -64 \right )+ 128

\displaystyle = 4,096+4,224 + 128

\displaystyle = 8,448

 

Only \displaystyle x = 4 makes the polynomial equal to 0, so of the four choices, only \displaystyle x - 4 is a factor of the polynomial.

Learning Tools by Varsity Tutors