Finite Mathematics : Systems of Linear Equations: Matrices

Study concepts, example questions & explanations for Finite Mathematics

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : Systems Of Linear Equations: Matrices

\displaystyle A= \begin{bmatrix}- \frac{4}{7} & \frac{2}{9} \\ \\ -\frac{5}{6}& \frac{3}{11} \end{bmatrix} and \displaystyle B= \begin{bmatrix} \frac{5}{7} & \frac{2}{9} \\ \\ -\frac{5}{6}& -\frac{8}{11} \end{bmatrix}.

True or false: \displaystyle A- B = I, where \displaystyle I is the two-by-two identity matrix.

Possible Answers:

True

False

Correct answer:

False

Explanation:

First, it must be established that \displaystyle A- B is defined. This is the case if and only \displaystyle A and \displaystyle B have the same number of rows, which is true, and they have the same number of columns, which is also true. \displaystyle A -B is therefore defined.

Subtraction of two matrices is performed by subtracting corresponding elements, so

\displaystyle A-B= \begin{bmatrix}- \frac{4}{7} & \frac{2}{9} \\ \\ -\frac{5}{6}& \frac{3}{11} \end{bmatrix}- \begin{bmatrix} \frac{5}{7} & \frac{2}{9} \\ \\ -\frac{5}{6}& -\frac{8}{11} \end{bmatrix}

\displaystyle = \begin{bmatrix}- \frac{4}{7}-\frac{5}{7} & \frac{2}{9} - \frac{2}{9} \\ \\ -\frac{5}{6} - \left ( -\frac{5}{6} \right )& \frac{3}{11} -\left ( -\frac{8}{11} \right )\end{bmatrix}

\displaystyle = \begin{bmatrix} {\color{Red} -1} & 0 \\ 0 & 1 \end{bmatrix}

However, \displaystyle I = \begin{bmatrix} {\color{Red} 1 }& 0 \\ 0 & 1 \end{bmatrix}.

Therefore, \displaystyle A-B \ne I.

 

Example Question #32 : Systems Of Linear Equations: Matrices

\displaystyle 2x+ 5y = 17

\displaystyle 4x-y = 13

Use Cramer's rule to evaluate \displaystyle x.

Possible Answers:

None of the other choices gives the correct response.

\displaystyle x= \frac{21}{11}

\displaystyle x= \frac{41}{11}

\displaystyle x= -\frac{69}{22}

\displaystyle x= -\frac{59}{22}

Correct answer:

\displaystyle x= \frac{41}{11}

Explanation:

By Cramer's rule, the value of \displaystyle x is equal to \displaystyle x= \frac{D_{x}}{D}, where \displaystyle D is the determinant of the matrix of coefficients

\displaystyle D =\begin{vmatrix} 2 & 5 \\ 4 & -1 \end{vmatrix},

and \displaystyle D_{x} is the same matrix with the x-coefficients replaced by the constants:

\displaystyle D_{x}= \begin{vmatrix} 17 & 5 \\ 13 & -1 \end{vmatrix}

The determinant of a two-by-two matrix is equal to the product of the entries in the main diagonal minus the product of the other two entries. Therefore,

\displaystyle D_{x}= \begin{vmatrix} 17 & 5 \\ 13 & -1 \end{vmatrix} = 17(-1)-5(13)= -17 -65 = -82

\displaystyle D= \begin{vmatrix} 2 & 5 \\ 4 & -1 \end{vmatrix} = 2(-1) - 5(4) = -2 - 20 = -22

and

\displaystyle x= \frac{D_{x}}{D} = \frac{-82}{-22} = \frac{41}{11}.

 

Example Question #33 : Systems Of Linear Equations: Matrices

The initial simplex tableau for a minimization linear programming problem is given below:

\displaystyle \begin{bmatrix} 2 & 3 & 2 &1 & 0 & 0 & 1,200 \\ 1 & 2 & 4 & 0 & 1 & 0 & 600\\ 0 & 4 & 3 & 0 & 0 & 1 & 900 \\ -1 & -1 & -2 & 0&0&0 & 0 \end{bmatrix}

After the first pivot of the simplex method is performed, what will be the entry at bottom right?

Possible Answers:

\displaystyle 400

\displaystyle 1,200

\displaystyle 300

\displaystyle 0

\displaystyle 600

Correct answer:

\displaystyle 300

Explanation:

First, the pivot element must be identified. Select the pivot column by spotting the "most negative" element in the bottom, or objective, row. This is the \displaystyle -2 in Column 3, making that the pivot column.

Select the pivot row by dividing the rightmost element in each other row by the pivot-column element in that row. The "least positive" quotient determines the pivot row:

The "least positive" of the three quotients is 150, in Row 2. The pivot element is the 4 in Row 2, Column 3.

Perform the pivot by first multiplying each entry in Row 2 by \displaystyle \frac{1}{4} in order to make the pivot element a 1:

\displaystyle \frac{1}{4}R2\rightarrow R2

\displaystyle \begin{bmatrix} 2 & 3 & 2 &1 & 0 & 0 & 1,200 \\ \frac{1}{4} & \frac{1}{2} & 1 & 0 & \frac{1}{4} & 0 & 150\\ 0 & 4 & 3 & 0 & 0 & 1 & 900 \\ -1 & -1 & -2 & 0&0&0 & 0 \end{bmatrix}

Make the other elements in that column zeroes by adding multiples of the pivot row to the other rows, as follows:

\displaystyle -2R2 + R 1 \rightarrow R1

\displaystyle -3R2 + R3 \rightarrow R3

\displaystyle 2R2 + R4 \rightarrow R4

The entry at bottom right is 300.

Learning Tools by Varsity Tutors