Common Core: High School - Statistics and Probability : Summarize Interpret Categorical Data in Two-Way Frequency Tables: CCSS.Math.Content.HSS-ID.B.5

Study concepts, example questions & explanations for Common Core: High School - Statistics and Probability

varsity tutors app store varsity tutors android store

All Common Core: High School - Statistics and Probability Resources

3 Diagnostic Tests 70 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #71 : High School: Statistics & Probability

Suppose a social scientist wants to know the effects of gender upon film preferences. She samples fifty men and women and asks them to mark their preference between to genres: documentaries and dramas. She then constructs a two-way frequency table as shown:

What is the relative probability of men who prefer dramas?

Possible Answers:

Correct answer:

Explanation:

This question requires us to calculate a relative probability from a two-way frequency chart. Before we can calculate this probability, we need to consider the composition of these tables. The numbers located within the table are not quantitative (i.e. they simply represent the number of times a particular phenomenon occurs). These tables are made up of marginal and joint frequencies. Marginal frequencies occur in the columns and rows labeled as “titles,’” while the joint frequencies are embedded in the table. Let’s observe the frequency table given in the question:

Relative probabilities are calculated by dividing the marginal and joint frequencies by the total in the table. If we divide each frequency by the total frequency, then we can create the following table:

In this table, we can see that the relative probability of men who like dramas is:

 This can also be solved by graphing the relative probabilities on a stacked bar chart such as the one shown below:

Bar7

Example Question #72 : High School: Statistics & Probability

Suppose a social scientist wants to know the effects of gender upon film preferences. She samples fifty men and women and asks them to mark their preference between to genres: documentaries and dramas. She then constructs a two-way frequency table as shown:

What is the relative probability of men who prefer dramas?

Possible Answers:

Correct answer:

Explanation:

This question requires us to calculate a relative probability from a two-way frequency chart. Before we can calculate this probability, we need to consider the composition of these tables. The numbers located within the table are not quantitative (i.e. they simply represent the number of times a particular phenomenon occurs). These tables are made up of marginal and joint frequencies. Marginal frequencies occur in the columns and rows labeled as “titles,’” while the joint frequencies are embedded in the table. Let’s observe the frequency table given in the question:

Relative probabilities are calculated by dividing the marginal and joint frequencies by the total in the table. If we divide each frequency by the total frequency, then we can create the following table:

In this table, we can see that the relative probability of men who like dramas is:

 

This can also be solved by graphing the relative probabilities on a stacked bar chart such as the one shown below:

Bar8

Example Question #73 : High School: Statistics & Probability

Suppose a social scientist wants to know the effects of gender upon film preferences. She samples fifty men and women and asks them to mark their preference between to genres: documentaries and dramas. She then constructs a two-way frequency table as shown:

What is the relative probability of men who prefer dramas?

Possible Answers:

Correct answer:

Explanation:

This question requires us to calculate a relative probability from a two-way frequency chart. Before we can calculate this probability, we need to consider the composition of these tables. The numbers located within the table are not quantitative (i.e. they simply represent the number of times a particular phenomenon occurs). These tables are made up of marginal and joint frequencies. Marginal frequencies occur in the columns and rows labeled as “titles,’” while the joint frequencies are embedded in the table. Let’s observe the frequency table given in the question:

Relative probabilities are calculated by dividing the marginal and joint frequencies by the total in the table. If we divide each frequency by the total frequency, then we can create the following table:

In this table, we can see that the relative probability of men who like dramas is:

 

This can also be solved by graphing the relative probabilities on a stacked bar chart such as the one shown below:

Bar9

Example Question #74 : High School: Statistics & Probability

Suppose a social scientist wants to know the effects of gender upon film preferences. She samples fifty men and women and asks them to mark their preference between to genres: documentaries and dramas. She then constructs a two-way frequency table as shown:

What is the relative probability of men who prefer dramas?

Possible Answers:

Correct answer:

Explanation:

This question requires us to calculate a relative probability from a two-way frequency chart. Before we can calculate this probability, we need to consider the composition of these tables. The numbers located within the table are not quantitative (i.e. they simply represent the number of times a particular phenomenon occurs). These tables are made up of marginal and joint frequencies. Marginal frequencies occur in the columns and rows labeled as “titles,’” while the joint frequencies are embedded in the table. Let’s observe the frequency table given in the question:

Relative probabilities are calculated by dividing the marginal and joint frequencies by the total in the table. If we divide each frequency by the total frequency, then we can create the following table:

In this table, we can see that the relative probability of men who like dramas is:

 

This can also be solved by graphing the relative probabilities on a stacked bar chart such as the one shown below:

Bar10

Example Question #75 : High School: Statistics & Probability

Suppose a social scientist wants to know the effects of gender upon film preferences. She samples fifty men and women and asks them to mark their preference between to genres: documentaries and dramas. She then constructs a two-way frequency table as shown:

What is the relative probability of men who prefer dramas?

Possible Answers:

Correct answer:

Explanation:

This question requires us to calculate a relative probability from a two-way frequency chart. Before we can calculate this probability, we need to consider the composition of these tables. The numbers located within the table are not quantitative (i.e. they simply represent the number of times a particular phenomenon occurs). These tables are made up of marginal and joint frequencies. Marginal frequencies occur in the columns and rows labeled as “titles,’” while the joint frequencies are embedded in the table. Let’s observe the frequency table given in the question:

Relative probabilities are calculated by dividing the marginal and joint frequencies by the total in the table. If we divide each frequency by the total frequency, then we can create the following table:

In this table, we can see that the relative probability of men who like dramas is:

 

This can also be solved by graphing the relative probabilities on a stacked bar chart such as the one shown below:

Bar11

Example Question #76 : High School: Statistics & Probability

Suppose a social scientist wants to know the effects of gender upon film preferences. She samples fifty men and women and asks them to mark their preference between to genres: documentaries and dramas. She then constructs a two-way frequency table as shown:

What is the relative probability of men who prefer dramas?

Possible Answers:

Correct answer:

Explanation:

This question requires us to calculate a relative probability from a two-way frequency chart. Before we can calculate this probability, we need to consider the composition of these tables. The numbers located within the table are not quantitative (i.e. they simply represent the number of times a particular phenomenon occurs). These tables are made up of marginal and joint frequencies. Marginal frequencies occur in the columns and rows labeled as “titles,’” while the joint frequencies are embedded in the table. Let’s observe the frequency table given in the question:

Relative probabilities are calculated by dividing the marginal and joint frequencies by the total in the table. If we divide each frequency by the total frequency, then we can create the following table:

In this table, we can see that the relative probability of men who like dramas is:

 

 This can also be solved by graphing the relative probabilities on a stacked bar chart such as the one shown below:

Bar12

Example Question #77 : High School: Statistics & Probability

Suppose a social scientist wants to know the effects of gender upon film preferences. She samples fifty men and women and asks them to mark their preference between to genres: documentaries and dramas. She then constructs a two-way frequency table as shown:

2 way

What is the conditional probability of men who like documentaries?

Possible Answers:

Correct answer:

Explanation:

This question requires us to calculate a conditional probability from a two-way frequency chart. Before we can calculate this probability, we need to consider the composition of these tables. The numbers located within the table are not quantitative (i.e. they simply represent the number of times a particular phenomenon occurs). These tables are made up of marginal and joint frequencies. Marginal frequencies occur in the columns and rows labeled as “titles,’” while the joint frequencies are embedded in the table. Let’s observe the frequency table given in the question:

2 way

Conditional probabilities are calculated by dividing a joint frequency by a marginal frequency. In this case we need to divide the number of men who like documentaries by the total number of men in the study (i.e. the two conditions we know).

Example Question #78 : High School: Statistics & Probability

Suppose a social scientist wants to know the effects of gender upon film preferences. She samples fifty men and women and asks them to mark their preference between to genres: documentaries and dramas. She then constructs a two-way frequency table as shown:

What is the conditional probability of men who like documentaries?

Possible Answers:

Correct answer:

Explanation:

This question requires us to calculate a conditional probability from a two-way frequency chart. Before we can calculate this probability, we need to consider the composition of these tables. The numbers located within the table are not quantitative (i.e. they simply represent the number of times a particular phenomenon occurs). These tables are made up of marginal and joint frequencies. Marginal frequencies occur in the columns and rows labeled as “titles,’” while the joint frequencies are embedded in the table. Let’s observe the frequency table given in the question:

Conditional probabilities are calculated by dividing a joint frequency by a marginal frequency. In this case we need to divide the number of men who like documentaries by the total number of men in the study (i.e. the two conditions we know).

 

Example Question #81 : High School: Statistics & Probability

Suppose a social scientist wants to know the effects of gender upon film preferences. She samples fifty men and women and asks them to mark their preference between to genres: documentaries and dramas. She then constructs a two-way frequency table as shown:

What is the conditional probability of men who like documentaries?

Possible Answers:

Correct answer:

Explanation:

This question requires us to calculate a conditional probability from a two-way frequency chart. Before we can calculate this probability, we need to consider the composition of these tables. The numbers located within the table are not quantitative (i.e. they simply represent the number of times a particular phenomenon occurs). These tables are made up of marginal and joint frequencies. Marginal frequencies occur in the columns and rows labeled as “titles,’” while the joint frequencies are embedded in the table. Let’s observe the frequency table given in the question:

Conditional probabilities are calculated by dividing a joint frequency by a marginal frequency. In this case we need to divide the number of men who like documentaries by the total number of men in the study (i.e. the two conditions we know).

 

Example Question #82 : High School: Statistics & Probability

Suppose a social scientist wants to know the effects of gender upon film preferences. She samples fifty men and women and asks them to mark their preference between to genres: documentaries and dramas. She then constructs a two-way frequency table as shown:

What is the conditional probability of men who like documentaries?

Possible Answers:

Correct answer:

Explanation:

This question requires us to calculate a conditional probability from a two-way frequency chart. Before we can calculate this probability, we need to consider the composition of these tables. The numbers located within the table are not quantitative (i.e. they simply represent the number of times a particular phenomenon occurs). These tables are made up of marginal and joint frequencies. Marginal frequencies occur in the columns and rows labeled as “titles,’” while the joint frequencies are embedded in the table. Let’s observe the frequency table given in the question:

Conditional probabilities are calculated by dividing a joint frequency by a marginal frequency. In this case we need to divide the number of men who like documentaries by the total number of men in the study (i.e. the two conditions we know).

 

All Common Core: High School - Statistics and Probability Resources

3 Diagnostic Tests 70 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors