Common Core: High School - Functions : Interpreting Functions

Study concepts, example questions & explanations for Common Core: High School - Functions

varsity tutors app store varsity tutors android store

All Common Core: High School - Functions Resources

6 Diagnostic Tests 82 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #5 : Compare Function Properties: Ccss.Math.Content.Hsf If.C.9

         Q1

The table and graph describe two different particle's travel over time. Which particle has a lower minimum?

Possible Answers:

Correct answer:

Explanation:

This question is testing one's ability to compare the properties of functions when they are illustrated in different forms. This question specifically is asking for the examination and interpretation of two quadratic functions for which one is illustrated in a table format and the other is illustrated graphically.

For the purpose of Common Core Standards, "Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions)." falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.9). 

Step 1: Identify the minimum of the table.

Using the table find the time value where the lowest distance exists. 

Recall that the time represents the  values while the distance represents the  values. Therefore the ordered pair for the minimum can be written as .

Step 2: Identify the minimum of the graph

Recall that the minimum of a parabola opening up, occurs at the valley where the vertex lies.

For this particular graph the vertex is at .

Q1

Step 3: Compare the minimums from step 1 and step 2.

Compare the  value coordinate from both minimums.

Therefore, the graph has the lowest minimum.

 

Example Question #6 : Compare Function Properties: Ccss.Math.Content.Hsf If.C.9

            Q6

The table and graph describe two different particle's travel over time. Which particle has a larger maximum?

Possible Answers:

Correct answer:

Explanation:

This question is testing one's ability to compare the properties of functions when they are illustrated in different forms. This question specifically is asking for the examination and interpretation of two quadratic functions for which one is illustrated in a table format and the other is illustrated graphically.

For the purpose of Common Core Standards, "Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions)." falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.9). 

Step 1: Identify the maximum of Table 1.

Using the table find the time value where the largest distance exists. 

Recall that the time represents the  values while the distance represents the  values. Therefore the ordered pair for the maximum can be written as .

Step 2: Identify the maximum of the graph

Recall that the maximum of a cubic function is known as a local maximum. This occurs at the vertex of the peak on the graph which in this particular case, is at the point .

Q6

Step 3: Compare the maximums from step 1 and step 2.

Compare the  value coordinate from both maximums.

Therefore, the table has the largest maximum.

Example Question #7 : Compare Function Properties: Ccss.Math.Content.Hsf If.C.9

   Q7

The table and graph describe two different particle's travel over time. Which particle has a larger maximum?

 

Possible Answers:

Correct answer:

Explanation:

This question is testing one's ability to compare the properties of functions when they are illustrated in different forms. This question specifically is asking for the examination and interpretation of two quadratic functions for which one is illustrated in a table format and the other is illustrated graphically.

For the purpose of Common Core Standards, "Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions)." falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.9). 

Step 1: Identify the maximum of Table 1.

Using the table find the time value where the largest distance exists. 

Recall that the time represents the  values while the distance represents the  values. Therefore the ordered pair for the maximum can be written as .

Step 2: Identify the maximum of the graph

Recall that the maximum of a parabola occurs at the vertex of the peak on the graph which in this particular case, is at the point 

Q7

Step 3: Compare the maximums from step 1 and step 2.

Compare the  value coordinate from both maximums.

Therefore, the table has the largest maximum.

Example Question #8 : Compare Function Properties: Ccss.Math.Content.Hsf If.C.9

   Q8

The table and graph describe two different particle's travel over time. Which particle has a larger maximum?

 

Possible Answers:

Correct answer:

Explanation:

This question is testing one's ability to compare the properties of functions when they are illustrated in different forms. This question specifically is asking for the examination and interpretation of two quadratic functions for which one is illustrated in a table format and the other is illustrated graphically.

For the purpose of Common Core Standards, "Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions)." falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.9). 

Step 1: Identify the maximum of Table 1.

Using the table find the time value where the largest distance exists. 

Recall that the time represents the  values while the distance represents the  values. Therefore the ordered pair for the maximum can be written as .

Step 2: Identify the maximum of the graph

Recall that the maximum of a parabola occurs at the vertex of the peak on the graph which in this particular case, is at the point 

Q8

Step 3: Compare the maximums from step 1 and step 2.

Compare the  value coordinate from both maximums.

Therefore, the table has the largest maximum.

Example Question #9 : Compare Function Properties: Ccss.Math.Content.Hsf If.C.9

   Q9

The table and graph describe two different particle's travel over time. Which particle has a lower minimum?

Possible Answers:

Correct answer:

Explanation:

This question is testing one's ability to compare the properties of functions when they are illustrated in different forms. This question specifically is asking for the examination and interpretation of two quadratic functions for which one is illustrated in a table format and the other is illustrated graphically.

For the purpose of Common Core Standards, "Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions)." falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.9). 

Step 1: Identify the minimum of the table.

Using the table find the time value where the lowest distance exists. 

Recall that the time represents the  values while the distance represents the  values. Therefore the ordered pair for the minimum can be written as .

Step 2: Identify the minimum of the graph

Recall that the minimum of a parabola opening up occurs at the valley where the vertex lies.

For this particular graph the vertex is at .

Q9

Step 3: Compare the minimums from step 1 and step 2.

Compare the  value coordinate from both minimums.

Therefore, the graph has the lowest minimum.

Example Question #10 : Compare Function Properties: Ccss.Math.Content.Hsf If.C.9

    Q10

The table and graph describe two different particle's travel over time. Which particle has a larger maximum?

Possible Answers:

Correct answer:

Explanation:

This question is testing one's ability to compare the properties of functions when they are illustrated in different forms. This question specifically is asking for the examination and interpretation of two quadratic functions for which one is illustrated in a table format and the other is illustrated graphically.

For the purpose of Common Core Standards, "Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions)." falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.9). 

Step 1: Identify the maximum of Table 1.

Using the table find the time value where the largest distance exists. 

Recall that the time represents the  values while the distance represents the  values. Therefore the ordered pair for the maximum can be written as .

Step 2: Identify the maximum of the graph

Recall that the maximum of a cubic function is known as a local maximum. This occurs at the vertex of the peak on the graph which in this particular case, is at the point .

Q10

Step 3: Compare the maximums from step 1 and step 2.

Compare the  value coordinate from both maximums.

Therefore, the table has the largest maximum.

Example Question #161 : High School: Functions

      Q11

The table and graph describe two different particle's travel over time. Which particle has a lower minimum?

 

Possible Answers:

Correct answer:

Explanation:

This question is testing one's ability to compare the properties of functions when they are illustrated in different forms. This question specifically is asking for the examination and interpretation of two quadratic functions for which one is illustrated in a table format and the other is illustrated graphically.

For the purpose of Common Core Standards, "Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions)." falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.9). 

Step 1: Identify the minimum of the table.

Using the table find the time value where the lowest distance exists. 

Recall that the time represents the  values while the distance represents the  values. Therefore the ordered pair for the minimum can be written as .

Step 2: Identify the minimum of the graph

Recall that the minimum of a cubic function is known as a local minimum. This occurs at the valley where the vertex lies.

For this particular graph the vertex is at .

Q11

Step 3: Compare the minimums from step 1 and step 2.

Compare the  value coordinate from both minimums.

Therefore, the graph has the lowest minimum.

Example Question #162 : High School: Functions

      Q6

The table and graph describe two different particle's travel over time. Which particle has a larger maximum?

 

Possible Answers:

Correct answer:

Explanation:

This question is testing one's ability to compare the properties of functions when they are illustrated in different forms. This question specifically is asking for the examination and interpretation of two quadratic functions for which one is illustrated in a table format and the other is illustrated graphically.

For the purpose of Common Core Standards, "Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions)." falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.9). 

Step 1: Identify the maximum of Table 1.

Using the table find the time value where the largest distance exists. 

Recall that the time represents the  values while the distance represents the  values. Therefore the ordered pair for the maximum can be written as .

Step 2: Identify the maximum of the graph

Recall that the maximum of a cubic function is known as a local maximum. This occurs at the vertex of the peak on the graph which in this particular case, is at the point .

Q6

Step 3: Compare the maximums from step 1 and step 2.

Compare the  value coordinate from both maximums.

Therefore, the table has the largest maximum.

All Common Core: High School - Functions Resources

6 Diagnostic Tests 82 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors