Common Core: High School - Algebra : Identify Zeros, Factor and Graph Polynomials: CCSS.Math.Content.HSA-APR.B.3

Study concepts, example questions & explanations for Common Core: High School - Algebra

varsity tutors app store varsity tutors android store

All Common Core: High School - Algebra Resources

8 Diagnostic Tests 97 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #1 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the \displaystyle x-intercept(s) of the function?

\displaystyle y=x^2-x-6

Possible Answers:

\displaystyle \text{x-intercepts: }2, -3

\displaystyle \text{x-intercepts:}-2, -3

\displaystyle \text{x-intercepts:}-2, 3

\displaystyle \text{x-intercepts:}-1, 6

\displaystyle \text{x-intercepts: }2, 3

Correct answer:

\displaystyle \text{x-intercepts:}-2, 3

Explanation:

To find the \displaystyle x-intercept of a function, first recall that the \displaystyle x-intercept represents the points where the graph of the function crosses the \displaystyle x-axis. In other words where the function has a \displaystyle y value equal to zero.

One technique that can be used is factorization. In general form,

\displaystyle y=x^2+bx+c\rightarrow(x+c_1)(x+c_2)

where,

\displaystyle c_1 and \displaystyle c_2 are factors of \displaystyle c and when added together results in \displaystyle b.

For the given function,

 \displaystyle y=x^2-x-6

the coefficients are,

\displaystyle \\b=-1 \\c=-6

therefore the factors of \displaystyle c that have a sum of \displaystyle b are,

\displaystyle y=(x-3)(x+2)

Now find the \displaystyle x-intercepts of the function by setting each binomial equal to zero and solving for \displaystyle x.

\displaystyle \\x-3=0\rightarrow x=3 \\x+2=0\rightarrow x=-2

To verify, graph the function.

Screen shot 2016 03 08 at 11.06.54 am

The graph crosses the \displaystyle x-axis at -2 and 3, thus verifying the results found by factorization. 

Example Question #1 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the \displaystyle x-intercept(s) of the function?

\displaystyle y=x^2-7x+12

Possible Answers:

\displaystyle \text{x-intercepts: }3,4

\displaystyle \text{x-intercepts: }6,2

\displaystyle \text{x-intercepts: }-3,4

\displaystyle \text{x-intercepts: }3,-4

\displaystyle \text{x-intercepts: }-3,-4

Correct answer:

\displaystyle \text{x-intercepts: }3,4

Explanation:

To find the \displaystyle x-intercept of a function, first recall that the \displaystyle x-intercept represents the points where the graph of the function crosses the \displaystyle x-axis. In other words where the function has a \displaystyle y value equal to zero.

One technique that can be used is factorization. In general form,

\displaystyle y=x^2+bx+c\rightarrow(x+c_1)(x+c_2)

where,

\displaystyle c_1 and \displaystyle c_2 are factors of \displaystyle c and when added together results in \displaystyle b.

For the given function,

 \displaystyle y=x^2-7x+12

the coefficients are,

\displaystyle \\b=-7 \\c=12

therefore the factors of \displaystyle c that have a sum of \displaystyle b are,

\displaystyle y=(x-3)(x-4)

Now find the \displaystyle x-intercepts of the function by setting each binomial equal to zero and solving for \displaystyle x.

\displaystyle \\x-3=0\rightarrow x=3 \\x-4=0\rightarrow x=4

To verify, graph the function.

Screen shot 2016 03 08 at 12.13.08 pm

The graph crosses the \displaystyle x-axis at 3 and 4, thus verifying the results found by factorization. 

Example Question #2 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the \displaystyle x-intercept(s) of the function?

\displaystyle y=x^2+9x+18

Possible Answers:

\displaystyle \text{x-intercepts: }2,9

\displaystyle \text{x-intercepts: }6,-3

\displaystyle \text{x-intercepts:}-6,-3

\displaystyle \text{x-intercepts: }6,3

\displaystyle \text{x-intercepts:}-6,3

Correct answer:

\displaystyle \text{x-intercepts:}-6,-3

Explanation:

To find the \displaystyle x-intercept of a function, first recall that the \displaystyle x-intercept represents the points where the graph of the function crosses the \displaystyle x-axis. In other words where the function has a \displaystyle y value equal to zero.

One technique that can be used is factorization. In general form,

\displaystyle y=x^2+bx+c\rightarrow(x+c_1)(x+c_2)

where,

\displaystyle c_1 and \displaystyle c_2 are factors of \displaystyle c and when added together results in \displaystyle b.

For the given function,

 \displaystyle y=x^2+9x+18

the coefficients are,

\displaystyle \\b=9 \\c=18

therefore the factors of \displaystyle c that have a sum of \displaystyle b are,

\displaystyle y=(x+3)(x+6)

Now find the \displaystyle x-intercepts of the function by setting each binomial equal to zero and solving for \displaystyle x.

\displaystyle \\x+3=0\rightarrow x=-3 \\x+6=0\rightarrow x=-6

To verify, graph the function.

Screen shot 2016 03 08 at 12.27.49 pm

The graph crosses the \displaystyle x-axis at -3 and -6, thus verifying the results found by factorization. 

Example Question #2 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the \displaystyle x-intercept(s) of the function?

\displaystyle y=x^2+2x-8

Possible Answers:

\displaystyle \text{x-intercepts: }-1,8

\displaystyle \text{x-intercepts: }-4,-2

\displaystyle \text{x-intercepts: }4,2

\displaystyle \text{x-intercepts: }4,-2

\displaystyle \text{x-intercepts: }-4,2

Correct answer:

\displaystyle \text{x-intercepts: }-4,2

Explanation:

To find the \displaystyle x-intercept of a function, first recall that the \displaystyle x-intercept represents the points where the graph of the function crosses the \displaystyle x-axis. In other words where the function has a \displaystyle y value equal to zero.

One technique that can be used is factorization. In general form,

\displaystyle y=x^2+bx+c\rightarrow(x+c_1)(x+c_2)

where,

\displaystyle c_1 and \displaystyle c_2 are factors of \displaystyle c and when added together results in \displaystyle b.

For the given function,

 \displaystyle y=x^2+2x-8

the coefficients are,

\displaystyle \\b=2 \\c=-8

therefore the factors of \displaystyle c that have a sum of \displaystyle b are,

\displaystyle y=(x-2)(x+4)

Now find the \displaystyle x-intercepts of the function by setting each binomial equal to zero and solving for \displaystyle x.

\displaystyle \\x-2=0\rightarrow x=2 \\x+4=0\rightarrow x=-4

To verify, graph the function.

Screen shot 2016 03 08 at 12.52.32 pm

The graph crosses the \displaystyle x-axis at -4 and 2, thus verifying the results found by factorization. 

Example Question #3 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the \displaystyle x-intercept(s) of the function?

\displaystyle y=x^2+2x+1

Possible Answers:

\displaystyle \text{x-intercept: }1

\displaystyle \text{x-intercepts: }-1,0,1

\displaystyle \text{x-intercepts: }-1,1

\displaystyle \text{x-intercept: }0

\displaystyle \text{x-intercept: }-1

Correct answer:

\displaystyle \text{x-intercept: }-1

Explanation:

To find the \displaystyle x-intercept of a function, first recall that the \displaystyle x-intercept represents the points where the graph of the function crosses the \displaystyle x-axis. In other words where the function has a \displaystyle y value equal to zero.

One technique that can be used is factorization. In general form,

\displaystyle y=x^2+bx+c\rightarrow(x+c_1)(x+c_2)

where,

\displaystyle c_1 and \displaystyle c_2 are factors of \displaystyle c and when added together results in \displaystyle b.

For the given function,

 \displaystyle y=x^2+2x+1

the coefficients are,

\displaystyle \\b=2 \\c=1

therefore the factors of \displaystyle c that have a sum of \displaystyle b are,

\displaystyle y=(x+1)(x+1)

Now find the \displaystyle x-intercepts of the function by setting each binomial equal to zero and solving for \displaystyle x.

\displaystyle \\x+1=0\rightarrow x=-1

To verify, graph the function.

Screen shot 2016 03 08 at 1.07.18 pm

The graph crosses the \displaystyle x-axis at -1, thus verifying the result found by factorization. 

Example Question #4 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the \displaystyle x-intercept(s) of the function?

\displaystyle y=x^2+7x+6

Possible Answers:

\displaystyle \text{x-intercepts: }-6,-1

\displaystyle \text{x-intercepts: }3,2

\displaystyle \text{x-intercepts: }6,-1

\displaystyle \text{x-intercepts: }-6,1

\displaystyle \text{x-intercepts: }6,1

Correct answer:

\displaystyle \text{x-intercepts: }-6,-1

Explanation:

To find the \displaystyle x-intercept of a function, first recall that the \displaystyle x-intercept represents the points where the graph of the function crosses the \displaystyle x-axis. In other words where the function has a \displaystyle y value equal to zero.

One technique that can be used is factorization. In general form,

\displaystyle y=x^2+bx+c\rightarrow(x+c_1)(x+c_2)

where,

\displaystyle c_1 and \displaystyle c_2 are factors of \displaystyle c and when added together results in \displaystyle b.

For the given function,

 \displaystyle y=x^2+7x+6

the coefficients are,

\displaystyle \\b=7 \\c=6

therefore the factors of \displaystyle c that have a sum of \displaystyle b are,

\displaystyle y=(x+1)(x+6)

Now find the \displaystyle x-intercepts of the function by setting each binomial equal to zero and solving for \displaystyle x.

\displaystyle \\x+1=0\rightarrow x=-1 \\x+6=0\rightarrow x=-6

To verify, graph the function.

Screen shot 2016 03 08 at 1.27.02 pm

The graph crosses the \displaystyle x-axis at -6 and -1, thus verifying the results found by factorization. 

Example Question #3 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the \displaystyle x-intercept(s) of the function?

\displaystyle y=x^2+4x+3

Possible Answers:

\displaystyle \text{x-intercepts:}-3,-1,1

\displaystyle \text{x-intercepts: }3,-1

\displaystyle \text{x-intercepts: }3,1

\displaystyle \text{x-intercepts:}-3,-1

\displaystyle \text{x-intercepts:}-3,1

Correct answer:

\displaystyle \text{x-intercepts:}-3,-1

Explanation:

To find the \displaystyle x-intercept of a function, first recall that the \displaystyle x-intercept represents the points where the graph of the function crosses the \displaystyle x-axis. In other words where the function has a \displaystyle y value equal to zero.

One technique that can be used is factorization. In general form,

\displaystyle y=x^2+bx+c\rightarrow(x+c_1)(x+c_2)

where,

\displaystyle c_1 and \displaystyle c_2 are factors of \displaystyle c and when added together results in \displaystyle b.

For the given function,

 \displaystyle y=x^2+4x+3

the coefficients are,

\displaystyle \\b=4 \\c=3

therefore the factors of \displaystyle c that have a sum of \displaystyle b are,

\displaystyle y=(x+1)(x+3)

Now find the \displaystyle x-intercepts of the function by setting each binomial equal to zero and solving for \displaystyle x.

\displaystyle \\x+1=0\rightarrow x=-1 \\x+3=0\rightarrow x=-3

To verify, graph the function.

Screen shot 2016 03 08 at 1.52.17 pm

The graph crosses the \displaystyle x-axis at -1 and -3, thus verifying the results found by factorization. 

Example Question #4 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the \displaystyle x-intercept(s) of the function?

\displaystyle y=x^2-2x+1

Possible Answers:

\displaystyle \text{x-intercept: }0

\displaystyle \text{x-intercepts: }0,1

\displaystyle \text{x-intercepts: }1,-1

\displaystyle \text{x-intercept: }-1

\displaystyle \text{x-intercept: }1

Correct answer:

\displaystyle \text{x-intercept: }1

Explanation:

To find the \displaystyle x-intercept of a function, first recall that the \displaystyle x-intercept represents the points where the graph of the function crosses the \displaystyle x-axis. In other words where the function has a \displaystyle y value equal to zero.

One technique that can be used is factorization. In general form,

\displaystyle y=x^2+bx+c\rightarrow(x+c_1)(x+c_2)

where,

\displaystyle c_1 and \displaystyle c_2 are factors of \displaystyle c and when added together results in \displaystyle b.

For the given function,

 \displaystyle y=x^2-2x+1

the coefficients are,

\displaystyle \\b=-2 \\c=1

therefore the factors of \displaystyle c that have a sum of \displaystyle b are,

\displaystyle y=(x-1)(x-1)

Now find the \displaystyle x-intercepts of the function by setting each binomial equal to zero and solving for \displaystyle x.

\displaystyle \\x-1=0\rightarrow x=1

To verify, graph the function.

Screen shot 2016 03 09 at 9.54.14 am

The graph crosses the \displaystyle x-axis at 1, thus verifying the result found by factorization. 

Example Question #7 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the \displaystyle x-intercept(s) of the function?

\displaystyle y=x^2-8x+7

Possible Answers:

\displaystyle \text{x-intercepts: }1,8

\displaystyle \text{x-intercepts: }-1,7

\displaystyle \text{x-intercepts: }-1,-7

\displaystyle \text{x-intercepts: }1,7

\displaystyle \text{x-intercepts: }1,-7

Correct answer:

\displaystyle \text{x-intercepts: }1,7

Explanation:

To find the \displaystyle x-intercept of a function, first recall that the \displaystyle x-intercept represents the points where the graph of the function crosses the \displaystyle x-axis. In other words where the function has a \displaystyle y value equal to zero.

One technique that can be used is factorization. In general form,

\displaystyle y=x^2+bx+c\rightarrow(x+c_1)(x+c_2)

where,

\displaystyle c_1 and \displaystyle c_2 are factors of \displaystyle c and when added together results in \displaystyle b.

For the given function,

 \displaystyle y=x^2-8x+7

the coefficients are,

\displaystyle \\b=-8 \\c=7

therefore the factors of \displaystyle c that have a sum of \displaystyle b are,

\displaystyle y=(x-1)(x-7)

Now find the \displaystyle x-intercepts of the function by setting each binomial equal to zero and solving for \displaystyle x.

\displaystyle \\x-1=0\rightarrow x=1 \\x-7=0\rightarrow x=7

To verify, graph the function.

Screen shot 2016 03 09 at 10.02.27 am

The graph crosses the \displaystyle x-axis at 1 and 7, thus verifying the results found by factorization. 

Example Question #2 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the \displaystyle x-intercept(s) of the function?

\displaystyle y=x^2-5x+6

Possible Answers:

\displaystyle \text{x-intercepts: }2,3

\displaystyle \text{x-intercepts: }-2,-3

\displaystyle \text{x-intercepts: }2,1

\displaystyle \text{x-intercepts: }2,-3

\displaystyle \text{x-intercepts: }-2,3

Correct answer:

\displaystyle \text{x-intercepts: }2,3

Explanation:

To find the \displaystyle x-intercept of a function, first recall that the \displaystyle x-intercept represents the points where the graph of the function crosses the \displaystyle x-axis. In other words where the function has a \displaystyle y value equal to zero.

One technique that can be used is factorization. In general form,

\displaystyle y=x^2+bx+c\rightarrow(x+c_1)(x+c_2)

where,

\displaystyle c_1 and \displaystyle c_2 are factors of \displaystyle c and when added together results in \displaystyle b.

For the given function,

 \displaystyle y=x^2-5x+6

the coefficients are,

\displaystyle \\b=-5 \\c=6

therefore the factors of \displaystyle c that have a sum of \displaystyle b are,

\displaystyle y=(x-2)(x-3)

Now find the \displaystyle x-intercepts of the function by setting each binomial equal to zero and solving for \displaystyle x.

\displaystyle \\x-2=0\rightarrow x=2 \\x-3=0\rightarrow x=3

To verify, graph the function.

Screen shot 2016 03 09 at 10.10.58 am

The graph crosses the \displaystyle x-axis at 2 and 3, thus verifying the results found by factorization. 

All Common Core: High School - Algebra Resources

8 Diagnostic Tests 97 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors