Common Core: High School - Algebra : Identify Zeros, Factor and Graph Polynomials: CCSS.Math.Content.HSA-APR.B.3

Study concepts, example questions & explanations for Common Core: High School - Algebra

varsity tutors app store varsity tutors android store

All Common Core: High School - Algebra Resources

8 Diagnostic Tests 97 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #1 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the -intercept(s) of the function?

Possible Answers:

Correct answer:

Explanation:

To find the -intercept of a function, first recall that the -intercept represents the points where the graph of the function crosses the -axis. In other words where the function has a  value equal to zero.

One technique that can be used is factorization. In general form,

where,

 and  are factors of  and when added together results in .

For the given function,

 

the coefficients are,

therefore the factors of  that have a sum of  are,

Now find the -intercepts of the function by setting each binomial equal to zero and solving for .

To verify, graph the function.

Screen shot 2016 03 08 at 11.06.54 am

The graph crosses the -axis at -2 and 3, thus verifying the results found by factorization. 

Example Question #2 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the -intercept(s) of the function?

Possible Answers:

Correct answer:

Explanation:

To find the -intercept of a function, first recall that the -intercept represents the points where the graph of the function crosses the -axis. In other words where the function has a  value equal to zero.

One technique that can be used is factorization. In general form,

where,

 and  are factors of  and when added together results in .

For the given function,

 

the coefficients are,

therefore the factors of  that have a sum of  are,

Now find the -intercepts of the function by setting each binomial equal to zero and solving for .

To verify, graph the function.

Screen shot 2016 03 08 at 12.13.08 pm

The graph crosses the -axis at 3 and 4, thus verifying the results found by factorization. 

Example Question #3 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the -intercept(s) of the function?

Possible Answers:

Correct answer:

Explanation:

To find the -intercept of a function, first recall that the -intercept represents the points where the graph of the function crosses the -axis. In other words where the function has a  value equal to zero.

One technique that can be used is factorization. In general form,

where,

 and  are factors of  and when added together results in .

For the given function,

 

the coefficients are,

therefore the factors of  that have a sum of  are,

Now find the -intercepts of the function by setting each binomial equal to zero and solving for .

To verify, graph the function.

Screen shot 2016 03 08 at 12.27.49 pm

The graph crosses the -axis at -3 and -6, thus verifying the results found by factorization. 

Example Question #4 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the -intercept(s) of the function?

Possible Answers:

Correct answer:

Explanation:

To find the -intercept of a function, first recall that the -intercept represents the points where the graph of the function crosses the -axis. In other words where the function has a  value equal to zero.

One technique that can be used is factorization. In general form,

where,

 and  are factors of  and when added together results in .

For the given function,

 

the coefficients are,

therefore the factors of  that have a sum of  are,

Now find the -intercepts of the function by setting each binomial equal to zero and solving for .

To verify, graph the function.

Screen shot 2016 03 08 at 12.52.32 pm

The graph crosses the -axis at -4 and 2, thus verifying the results found by factorization. 

Example Question #221 : High School: Algebra

What are the -intercept(s) of the function?

Possible Answers:

Correct answer:

Explanation:

To find the -intercept of a function, first recall that the -intercept represents the points where the graph of the function crosses the -axis. In other words where the function has a  value equal to zero.

One technique that can be used is factorization. In general form,

where,

 and  are factors of  and when added together results in .

For the given function,

 

the coefficients are,

therefore the factors of  that have a sum of  are,

Now find the -intercepts of the function by setting each binomial equal to zero and solving for .

To verify, graph the function.

Screen shot 2016 03 08 at 1.07.18 pm

The graph crosses the -axis at -1, thus verifying the result found by factorization. 

Example Question #3 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the -intercept(s) of the function?

Possible Answers:

Correct answer:

Explanation:

To find the -intercept of a function, first recall that the -intercept represents the points where the graph of the function crosses the -axis. In other words where the function has a  value equal to zero.

One technique that can be used is factorization. In general form,

where,

 and  are factors of  and when added together results in .

For the given function,

 

the coefficients are,

therefore the factors of  that have a sum of  are,

Now find the -intercepts of the function by setting each binomial equal to zero and solving for .

To verify, graph the function.

Screen shot 2016 03 08 at 1.27.02 pm

The graph crosses the -axis at -6 and -1, thus verifying the results found by factorization. 

Example Question #221 : High School: Algebra

What are the -intercept(s) of the function?

Possible Answers:

Correct answer:

Explanation:

To find the -intercept of a function, first recall that the -intercept represents the points where the graph of the function crosses the -axis. In other words where the function has a  value equal to zero.

One technique that can be used is factorization. In general form,

where,

 and  are factors of  and when added together results in .

For the given function,

 

the coefficients are,

therefore the factors of  that have a sum of  are,

Now find the -intercepts of the function by setting each binomial equal to zero and solving for .

To verify, graph the function.

Screen shot 2016 03 08 at 1.52.17 pm

The graph crosses the -axis at -1 and -3, thus verifying the results found by factorization. 

Example Question #6 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the -intercept(s) of the function?

Possible Answers:

Correct answer:

Explanation:

To find the -intercept of a function, first recall that the -intercept represents the points where the graph of the function crosses the -axis. In other words where the function has a  value equal to zero.

One technique that can be used is factorization. In general form,

where,

 and  are factors of  and when added together results in .

For the given function,

 

the coefficients are,

therefore the factors of  that have a sum of  are,

Now find the -intercepts of the function by setting each binomial equal to zero and solving for .

To verify, graph the function.

Screen shot 2016 03 09 at 9.54.14 am

The graph crosses the -axis at 1, thus verifying the result found by factorization. 

Example Question #7 : Identify Zeros, Factor And Graph Polynomials: Ccss.Math.Content.Hsa Apr.B.3

What are the -intercept(s) of the function?

Possible Answers:

Correct answer:

Explanation:

To find the -intercept of a function, first recall that the -intercept represents the points where the graph of the function crosses the -axis. In other words where the function has a  value equal to zero.

One technique that can be used is factorization. In general form,

where,

 and  are factors of  and when added together results in .

For the given function,

 

the coefficients are,

therefore the factors of  that have a sum of  are,

Now find the -intercepts of the function by setting each binomial equal to zero and solving for .

To verify, graph the function.

Screen shot 2016 03 09 at 10.02.27 am

The graph crosses the -axis at 1 and 7, thus verifying the results found by factorization. 

Example Question #222 : High School: Algebra

What are the -intercept(s) of the function?

Possible Answers:

Correct answer:

Explanation:

To find the -intercept of a function, first recall that the -intercept represents the points where the graph of the function crosses the -axis. In other words where the function has a  value equal to zero.

One technique that can be used is factorization. In general form,

where,

 and  are factors of  and when added together results in .

For the given function,

 

the coefficients are,

therefore the factors of  that have a sum of  are,

Now find the -intercepts of the function by setting each binomial equal to zero and solving for .

To verify, graph the function.

Screen shot 2016 03 09 at 10.10.58 am

The graph crosses the -axis at 2 and 3, thus verifying the results found by factorization. 

All Common Core: High School - Algebra Resources

8 Diagnostic Tests 97 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors