Common Core: High School - Algebra : High School: Algebra

Study concepts, example questions & explanations for Common Core: High School - Algebra

varsity tutors app store varsity tutors android store

All Common Core: High School - Algebra Resources

8 Diagnostic Tests 97 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

Example Question #191 : High School: Algebra

What is the remainder when \(\displaystyle 11 x^{2} - 9 x + 7\) is divided by \(\displaystyle x + 13\)

Possible Answers:

\(\displaystyle 171\)

\(\displaystyle 1976\)

\(\displaystyle 2\)

\(\displaystyle 9\)

\(\displaystyle 169\)

Correct answer:

\(\displaystyle 1976\)

Explanation:

In order to solve this problem, we need to perform synthetic division. We set up synthetic division by writing down the zero of the expression we are dividing by, and the coefficients of the polynomial on a line.

\(\displaystyle \begin{tabular}{ c| ccc}-13&11&-9&7\\ ~ & ~ & ~ & ~ \\ \hline ~ & ~ & ~ & ~ \end{tabular}\)

The first step is to bring the coefficient of the \(\displaystyle \uptext{x}^2\) term down.

\(\displaystyle \begin{tabular}{ c| ccc}-13&11&-9&7\\ ~ & ~ & ~ & ~ \\ \hline ~ &11& ~ & ~ \end{tabular}\)

Now we multiply the zero by the term we just put down, and place it under the \(\displaystyle \uptext{x}\) term coefficient.

\(\displaystyle \begin{tabular}{ c| ccc}-13&11&-9&7\\ ~ & ~ &-143& ~ \\ \hline ~ &11& ~ & ~ \end{tabular}\)

Now we add the column up to get.

\(\displaystyle \begin{tabular}{ c| ccc}-13&11&-9&7\\~ & ~ &-143& ~ \\ \hline ~ &11&-152& ~ \end{tabular}\)

Now we multiply the number we got by the zero, and place it under the constant term.

\(\displaystyle \begin{tabular}{ c| ccc}-13&11&-9&7\\ ~ & ~ &-143&1976\\ \hline ~ &11&-152& ~ \end{tabular}\)

Now we add the column together to get.

\(\displaystyle \begin{tabular}{ c| ccc}-13&11&-9&7\\ ~ & ~ &-143&1976\\ \hline ~ &11&-152&1983\end{tabular}\)

The last number is the remainder, so our final answer is \(\displaystyle 1983\).

Example Question #120 : Arithmetic With Polynomials & Rational Expressions

What is the remainder when \(\displaystyle 8 x^{2} + 18 x + 7\) is divided by \(\displaystyle x + 7\)

Possible Answers:

\(\displaystyle 75\)

\(\displaystyle 266\)

\(\displaystyle 33\)

\(\displaystyle 26\)

\(\displaystyle 49\)

Correct answer:

\(\displaystyle 266\)

Explanation:

In order to solve this problem, we need to perform synthetic division. We set up synthetic division by writing down the zero of the expression we are dividing by, and the coefficients of the polynomial on a line.

\(\displaystyle \begin{tabular}{ c| ccc}-7&8&18&7\\ ~ & ~ & ~ & ~ \\ \hline ~ & ~ & ~ & ~ \end{tabular}\)

The first step is to bring the coefficient of the \(\displaystyle \uptext{x}^2\) term down.

\(\displaystyle \begin{tabular}{ c| ccc}-7&8&18&7\\ ~ & ~ & ~ & ~ \\ \hline ~ &8& ~ & ~ \end{tabular}\)

Now we multiply the zero by the term we just put down, and place it under the \(\displaystyle \uptext{x}\) term coefficient.

\(\displaystyle \begin{tabular}{ c| ccc}-7&8&18&7\\ ~ & ~ &-56& ~ \\ \hline ~ &8& ~ & ~ \end{tabular}\)

Now we add the column up to get.

\(\displaystyle \begin{tabular}{ c| ccc}-7&8&18&7\\~ & ~ &-56& ~ \\ \hline ~ &8&-38& ~ \end{tabular}\)

Now we multiply the number we got by the zero, and place it under the constant term.

\(\displaystyle \begin{tabular}{ c| ccc}-7&8&18&7\\ ~ & ~ &-56&266\\ \hline ~ &8&-38& ~ \end{tabular}\)

Now we add the column together to get.

\(\displaystyle \begin{tabular}{ c| ccc}-7&8&18&7\\ ~ & ~ &-56&266\\ \hline ~ &8&-38&273\end{tabular}\)

The last number is the remainder, so our final answer is \(\displaystyle 273\).

Example Question #191 : High School: Algebra

What is the remainder when \(\displaystyle 15 x^{2} - 2 x - 4\) is divided by \(\displaystyle x - 4\)

Possible Answers:

\(\displaystyle 232\)

\(\displaystyle 9\)

\(\displaystyle 16\)

\(\displaystyle 13\)

\(\displaystyle 29\)

Correct answer:

\(\displaystyle 232\)

Explanation:

In order to solve this problem, we need to perform synthetic division. We set up synthetic division by writing down the zero of the expression we are dividing by, and the coefficients of the polynomial on a line.

\(\displaystyle \begin{tabular}{ c| ccc}4&15&-2&-4\\ ~ & ~ & ~ & ~ \\ \hline ~ & ~ & ~ & ~ \end{tabular}\)

The first step is to bring the coefficient of the \(\displaystyle \uptext{x}^2\) term down.

\(\displaystyle \begin{tabular}{ c| ccc}4&15&-2&-4\\ ~ & ~ & ~ & ~ \\ \hline ~ &15& ~ & ~ \end{tabular}\)

Now we multiply the zero by the term we just put down, and place it under the \(\displaystyle \uptext{x}\) term coefficient.

\(\displaystyle \begin{tabular}{ c| ccc}4&15&-2&-4\\ ~ & ~ &60& ~ \\ \hline ~ &15& ~ & ~ \end{tabular}\)

Now we add the column up to get.

\(\displaystyle \begin{tabular}{ c| ccc}4&15&-2&-4\\~ & ~ &60& ~ \\ \hline ~ &15&58& ~ \end{tabular}\)

Now we multiply the number we got by the zero, and place it under the constant term.

\(\displaystyle \begin{tabular}{ c| ccc}4&15&-2&-4\\ ~ & ~ &60&232\\ \hline ~ &15&58& ~ \end{tabular}\)

Now we add the column together to get.

\(\displaystyle \begin{tabular}{ c| ccc}4&15&-2&-4\\ ~ & ~ &60&232\\ \hline ~ &15&58&228\end{tabular}\)

The last number is the remainder, so our final answer is \(\displaystyle 228\).

Example Question #192 : High School: Algebra

What is the remainder when \(\displaystyle 19 x^{2} - 14 x + 5\) is divided by \(\displaystyle x + 2\)

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 104\)

\(\displaystyle 5\)

\(\displaystyle 9\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 104\)

Explanation:

In order to solve this problem, we need to perform synthetic division. We set up synthetic division by writing down the zero of the expression we are dividing by, and the coefficients of the polynomial on a line.

\(\displaystyle \begin{tabular}{ c| ccc}-2&19&-14&5\\ ~ & ~ & ~ & ~ \\ \hline ~ & ~ & ~ & ~ \end{tabular}\)

The first step is to bring the coefficient of the \(\displaystyle \uptext{x}^2\) term down.

\(\displaystyle \begin{tabular}{ c| ccc}-2&19&-14&5\\ ~ & ~ & ~ & ~ \\ \hline ~ &19& ~ & ~ \end{tabular}\)

Now we multiply the zero by the term we just put down, and place it under the \(\displaystyle \uptext{x}\) term coefficient.

\(\displaystyle \begin{tabular}{ c| ccc}-2&19&-14&5\\ ~ & ~ &-38& ~ \\ \hline ~ &19& ~ & ~ \end{tabular}\)

Now we add the column up to get.

\(\displaystyle \begin{tabular}{ c| ccc}-2&19&-14&5\\~ & ~ &-38& ~ \\ \hline ~ &19&-52& ~ \end{tabular}\)

Now we multiply the number we got by the zero, and place it under the constant term.

\(\displaystyle \begin{tabular}{ c| ccc}-2&19&-14&5\\ ~ & ~ &-38&104\\ \hline ~ &19&-52& ~ \end{tabular}\)

Now we add the column together to get.

\(\displaystyle \begin{tabular}{ c| ccc}-2&19&-14&5\\ ~ & ~ &-38&104\\ \hline ~ &19&-52&109\end{tabular}\)

The last number is the remainder, so our final answer is \(\displaystyle 109\).

Example Question #122 : Arithmetic With Polynomials & Rational Expressions

What is the remainder when \(\displaystyle - 17 x^{2} + 12 x - 9\) is divided by \(\displaystyle x + 2\)

Possible Answers:

\(\displaystyle 4\)

\(\displaystyle -14\)

\(\displaystyle -1\)

\(\displaystyle -5\)

\(\displaystyle -92\)

Correct answer:

\(\displaystyle -92\)

Explanation:

In order to solve this problem, we need to perform synthetic division. We set up synthetic division by writing down the zero of the expression we are dividing by, and the coefficients of the polynomial on a line.

\(\displaystyle \begin{tabular}{ c| ccc}-2&-17&12&-9\\ ~ & ~ & ~ & ~ \\ \hline ~ & ~ & ~ & ~ \end{tabular}\)

The first step is to bring the coefficient of the \(\displaystyle \uptext{x}^2\) term down.

\(\displaystyle \begin{tabular}{ c| ccc}-2&-17&12&-9\\ ~ & ~ & ~ & ~ \\ \hline ~ &-17& ~ & ~ \end{tabular}\)

Now we multiply the zero by the term we just put down, and place it under the \(\displaystyle \uptext{x}\) term coefficient.

\(\displaystyle \begin{tabular}{ c| ccc}-2&-17&12&-9\\ ~ & ~ &34& ~ \\ \hline ~ &-17& ~ & ~ \end{tabular}\)

Now we add the column up to get.

\(\displaystyle \begin{tabular}{ c| ccc}-2&-17&12&-9\\~ & ~ &34& ~ \\ \hline ~ &-17&46& ~ \end{tabular}\)

Now we multiply the number we got by the zero, and place it under the constant term.

\(\displaystyle \begin{tabular}{ c| ccc}-2&-17&12&-9\\ ~ & ~ &34&-92\\ \hline ~ &-17&46& ~ \end{tabular}\)

Now we add the column together to get.

\(\displaystyle \begin{tabular}{ c| ccc}-2&-17&12&-9\\ ~ & ~ &34&-92\\ \hline ~ &-17&46&-101\end{tabular}\)

The last number is the remainder, so our final answer is \(\displaystyle -101\).

Example Question #194 : High School: Algebra

What is the remainder when \(\displaystyle - 13 x^{2} + 15 x + 2\) is divided by \(\displaystyle x - 7\)

Possible Answers:

\(\displaystyle -532\)

\(\displaystyle 4\)

\(\displaystyle 49\)

\(\displaystyle 51\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle -532\)

Explanation:

In order to solve this problem, we need to perform synthetic division. We set up synthetic division by writing down the zero of the expression we are dividing by, and the coefficients of the polynomial on a line.

\(\displaystyle \begin{tabular}{ c| ccc}7&-13&15&2\\ ~ & ~ & ~ & ~ \\ \hline ~ & ~ & ~ & ~ \end{tabular}\)

The first step is to bring the coefficient of the \(\displaystyle \uptext{x}^2\) term down.

\(\displaystyle \begin{tabular}{ c| ccc}7&-13&15&2\\ ~ & ~ & ~ & ~ \\ \hline ~ &-13& ~ & ~ \end{tabular}\)

Now we multiply the zero by the term we just put down, and place it under the \(\displaystyle \uptext{x}\) term coefficient.

\(\displaystyle \begin{tabular}{ c| ccc}7&-13&15&2\\ ~ & ~ &-91& ~ \\ \hline ~ &-13& ~ & ~ \end{tabular}\)

Now we add the column up to get.

\(\displaystyle \begin{tabular}{ c| ccc}7&-13&15&2\\~ & ~ &-91& ~ \\ \hline ~ &-13&-76& ~ \end{tabular}\)

Now we multiply the number we got by the zero, and place it under the constant term.

\(\displaystyle \begin{tabular}{ c| ccc}7&-13&15&2\\ ~ & ~ &-91&-532\\ \hline ~ &-13&-76& ~ \end{tabular}\)

Now we add the column together to get.

\(\displaystyle \begin{tabular}{ c| ccc}7&-13&15&2\\ ~ & ~ &-91&-532\\ \hline ~ &-13&-76&-530\end{tabular}\)

The last number is the remainder, so our final answer is \(\displaystyle -530\).

Example Question #195 : High School: Algebra

What is the remainder when \(\displaystyle 4 x^{2} - 4 x + 5\) is divided by \(\displaystyle x + 4\)

Possible Answers:

\(\displaystyle 80\)

\(\displaystyle 5\)

\(\displaystyle 16\)

\(\displaystyle 16\)

Correct answer:

\(\displaystyle 80\)

Explanation:

In order to solve this problem, we need to perform synthetic division. We set up synthetic division by writing down the zero of the expression we are dividing by, and the coefficients of the polynomial on a line.

\(\displaystyle \begin{tabular}{ c| ccc}-4&4&-4&5\\ ~ & ~ & ~ & ~ \\ \hline ~ & ~ & ~ & ~ \end{tabular}\)

The first step is to bring the coefficient of the \(\displaystyle \uptext{x}^2\) term down.

\(\displaystyle \begin{tabular}{ c| ccc}-4&4&-4&5\\ ~ & ~ & ~ & ~ \\ \hline ~ &4& ~ & ~ \end{tabular}\)

Now we multiply the zero by the term we just put down, and place it under the \(\displaystyle \uptext{x}\) term coefficient.

\(\displaystyle \begin{tabular}{ c| ccc}-4&4&-4&5\\ ~ & ~ &-16& ~ \\ \hline ~ &4& ~ & ~ \end{tabular}\)

Now we add the column up to get.

\(\displaystyle \begin{tabular}{ c| ccc}-4&4&-4&5\\~ & ~ &-16& ~ \\ \hline ~ &4&-20& ~ \end{tabular}\)

Now we multiply the number we got by the zero, and place it under the constant term.

\(\displaystyle \begin{tabular}{ c| ccc}-4&4&-4&5\\ ~ & ~ &-16&80\\ \hline ~ &4&-20& ~ \end{tabular}\)

Now we add the column together to get.

\(\displaystyle \begin{tabular}{ c| ccc}-4&4&-4&5\\ ~ & ~ &-16&80\\ \hline ~ &4&-20&85\end{tabular}\)

The last number is the remainder, so our final answer is \(\displaystyle 85\).

Example Question #196 : High School: Algebra

What is the remainder when \(\displaystyle 6 x^{2} + 8 x - 7\) is divided by \(\displaystyle x - 19\)

Possible Answers:

\(\displaystyle 375\)

\(\displaystyle 2318\)

\(\displaystyle 7\)

\(\displaystyle 361\)

\(\displaystyle 14\)

Correct answer:

\(\displaystyle 2318\)

Explanation:

In order to solve this problem, we need to perform synthetic division. We set up synthetic division by writing down the zero of the expression we are dividing by, and the coefficients of the polynomial on a line.

\(\displaystyle \begin{tabular}{ c| ccc}19&6&8&-7\\ ~ & ~ & ~ & ~ \\ \hline ~ & ~ & ~ & ~ \end{tabular}\)

The first step is to bring the coefficient of the \(\displaystyle \uptext{x}^2\) term down.

\(\displaystyle \begin{tabular}{ c| ccc}19&6&8&-7\\ ~ & ~ & ~ & ~ \\ \hline ~ &6& ~ & ~ \end{tabular}\)

Now we multiply the zero by the term we just put down, and place it under the \(\displaystyle \uptext{x}\) term coefficient.

\(\displaystyle \begin{tabular}{ c| ccc}19&6&8&-7\\ ~ & ~ &114& ~ \\ \hline ~ &6& ~ & ~ \end{tabular}\)

Now we add the column up to get.

\(\displaystyle \begin{tabular}{ c| ccc}19&6&8&-7\\~ & ~ &114& ~ \\ \hline ~ &6&122& ~ \end{tabular}\)

Now we multiply the number we got by the zero, and place it under the constant term.

\(\displaystyle \begin{tabular}{ c| ccc}19&6&8&-7\\ ~ & ~ &114&2318\\ \hline ~ &6&122& ~ \end{tabular}\)

Now we add the column together to get.

\(\displaystyle \begin{tabular}{ c| ccc}19&6&8&-7\\ ~ & ~ &114&2318\\ \hline ~ &6&122&2311\end{tabular}\)

The last number is the remainder, so our final answer is \(\displaystyle 2311\).

Example Question #197 : High School: Algebra

What is the remainder when \(\displaystyle 11 x^{2} + 4 x + 3\) is divided by \(\displaystyle x + 18\)

Possible Answers:

\(\displaystyle 3492\)

\(\displaystyle 15\)

\(\displaystyle 324\)

\(\displaystyle 18\)

\(\displaystyle 339\)

Correct answer:

\(\displaystyle 3492\)

Explanation:

In order to solve this problem, we need to perform synthetic division. We set up synthetic division by writing down the zero of the expression we are dividing by, and the coefficients of the polynomial on a line.

\(\displaystyle \begin{tabular}{ c| ccc}-18&11&4&3\\ ~ & ~ & ~ & ~ \\ \hline ~ & ~ & ~ & ~ \end{tabular}\)

The first step is to bring the coefficient of the \(\displaystyle \uptext{x}^2\) term down.

\(\displaystyle \begin{tabular}{ c| ccc}-18&11&4&3\\ ~ & ~ & ~ & ~ \\ \hline ~ &11& ~ & ~ \end{tabular}\)

Now we multiply the zero by the term we just put down, and place it under the \(\displaystyle \uptext{x}\) term coefficient.

\(\displaystyle \begin{tabular}{ c| ccc}-18&11&4&3\\ ~ & ~ &-198& ~ \\ \hline ~ &11& ~ & ~ \end{tabular}\)

Now we add the column up to get.

\(\displaystyle \begin{tabular}{ c| ccc}-18&11&4&3\\~ & ~ &-198& ~ \\ \hline ~ &11&-194& ~ \end{tabular}\)

Now we multiply the number we got by the zero, and place it under the constant term.

\(\displaystyle \begin{tabular}{ c| ccc}-18&11&4&3\\ ~ & ~ &-198&3492\\ \hline ~ &11&-194& ~ \end{tabular}\)

Now we add the column together to get.

\(\displaystyle \begin{tabular}{ c| ccc}-18&11&4&3\\ ~ & ~ &-198&3492\\ \hline ~ &11&-194&3495\end{tabular}\)

The last number is the remainder, so our final answer is \(\displaystyle 3495\).

Example Question #121 : Arithmetic With Polynomials & Rational Expressions

What is the remainder when \(\displaystyle - 8 x^{2} + 11 x + 1\) is divided by \(\displaystyle x + 15\)

Possible Answers:

\(\displaystyle 4\)

\(\displaystyle 225\)

\(\displaystyle -1965\)

\(\displaystyle 228\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle -1965\)

Explanation:

In order to solve this problem, we need to perform synthetic division. We set up synthetic division by writing down the zero of the expression we are dividing by, and the coefficients of the polynomial on a line.

\(\displaystyle \begin{tabular}{ c| ccc}-15&-8&11&1\\ ~ & ~ & ~ & ~ \\ \hline ~ & ~ & ~ & ~ \end{tabular}\)

The first step is to bring the coefficient of the \(\displaystyle \uptext{x}^2\) term down.

\(\displaystyle \begin{tabular}{ c| ccc}-15&-8&11&1\\ ~ & ~ & ~ & ~ \\ \hline ~ &-8& ~ & ~ \end{tabular}\)

Now we multiply the zero by the term we just put down, and place it under the \(\displaystyle \uptext{x}\) term coefficient.

\(\displaystyle \begin{tabular}{ c| ccc}-15&-8&11&1\\ ~ & ~ &120& ~ \\ \hline ~ &-8& ~ & ~ \end{tabular}\)

Now we add the column up to get.

\(\displaystyle \begin{tabular}{ c| ccc}-15&-8&11&1\\~ & ~ &120& ~ \\ \hline ~ &-8&131& ~ \end{tabular}\)

Now we multiply the number we got by the zero, and place it under the constant term.

\(\displaystyle \begin{tabular}{ c| ccc}-15&-8&11&1\\ ~ & ~ &120&-1965\\ \hline ~ &-8&131& ~ \end{tabular}\)

Now we add the column together to get.

\(\displaystyle \begin{tabular}{ c| ccc}-15&-8&11&1\\ ~ & ~ &120&-1965\\ \hline ~ &-8&131&-1964\end{tabular}\)

The last number is the remainder, so our final answer is \(\displaystyle -1964\).

All Common Core: High School - Algebra Resources

8 Diagnostic Tests 97 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors