Common Core: 8th Grade Math : Grade 8

Study concepts, example questions & explanations for Common Core: 8th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Volume Of A Cone

A cone has the height of 4 meters and the circular base area of 4 square meters. If we want to fill out the cone with water (density = ), what is the mass of required water (nearest whole kilogram)?

Possible Answers:

6333

Correct answer:

Explanation:

The volume of a cone is:

where is the radius of the circular base, and is the height (the perpendicular distance from the base to the vertex).

 

As the circular base area is , so we can rewrite the volume formula as follows:

 

 

where  is the circular base area and known in this problem. So we can write:

 

 

We know that density is defined as mass per unit volume or:

 

 

Where is the density; is the mass and is the volume. So we get:

 

Example Question #1 : How To Find The Volume Of A Cone

The vertical height (or altitude) of a right cone is . The radius of the circular base of the cone is . Find the volume of the cone in terms of .

Possible Answers:

Correct answer:

Explanation:

The volume of a cone is:

 

where is the radius of the circular base, and is the height (the perpendicular distance from the base to the vertex).

 

Example Question #2 : How To Find The Volume Of A Cone

A right cone has a volume of , a height of and a radius of the circular base of . Find .

Possible Answers:

Correct answer:

Explanation:

The volume of a cone is given by:

where is the radius of the circular base, and is the height; the perpendicular distance from the base to the vertex. Substitute the known values in the formula:

 

Example Question #2 : How To Find The Volume Of A Cone

A cone has a diameter of  and a height of . In cubic meters, what is the volume of this cone?

Possible Answers:

Correct answer:

Explanation:

First, divide the diameter in half to find the radius.

Now, use the formula to find the volume of the cone.

Example Question #143 : Geometry

The height of a cylinder is 3 inches and the radius of the circular end of the cylinder is 3 inches. Give the volume and surface area of the cylinder.

Possible Answers:

Correct answer:

Explanation:

The volume of a cylinder is found by multiplying the area of one end of the cylinder (base) by its height or:

 

where is the radius of the circular end of the cylinder and is the height of the cylinder. So we can write:

 

 

The surface area of the cylinder is given by:

 

 

where is the surface area of the cylinder, is the radius of the cylinder and is the height of the cylinder. So we can write:

Example Question #481 : Grade 8

The height of a cylinder is two times the length of the radius of the circular end of a cylinder. If the volume of the cylinder is , what is the height of the cylinder?

Possible Answers:

Correct answer:

Explanation:

The volume of a cylinder is:

 

where is the radius of the circular end of the cylinder and is the height of the cylinder.


Since , we can substitute that into the volume formula. So we can write:

 

So we get:

 

Example Question #144 : Geometry

The end (base) of a cylinder has an area of square inches. If the height of the cylinder is half of the radius of the base of the cylinder, give the volume of the cylinder.

Possible Answers:

Correct answer:

Explanation:

The area of the end (base) of a cylinder is , so we can write:

 

The height of the cylinder is half of the radius of the base of the cylinder, that means:

 

 

The volume of a cylinder is found by multiplying the area of one end of the cylinder (base) by its height:

or

Example Question #145 : Geometry

We have two right cylinders. The radius of the base Cylinder 1 is  times more than that of Cylinder 2, and the height of Cylinder 2 is 4 times more than the height of Cylinder 1. The volume of Cylinder 1 is what fraction of the volume of Cylinder 2?

Possible Answers:

Correct answer:

Explanation:

The volume of a cylinder is:

where is the volume of the cylinder,   is the radius of the circular end of the cylinder, and is the height of the cylinder.

 

So we can write:

 

and

 

Now we can summarize the given information:

 

Now substitute them in the formula:

 

Example Question #146 : Geometry

Two right cylinders have the same height. The radius of the base of the first cylinder is two times more than that of the second cylinder. Compare the volume of the two cylinders.

Possible Answers:

Correct answer:

Explanation:

The volume of a cylinder is:

where is the radius of the circular end of the cylinder and is the height of the cylinder. So we can write:

 

We know that 

and 

.

 

So we can write:

Example Question #1991 : Hspt Mathematics

A cylinder has a diameter of  inches and a height of  inches. Find the volume, in cubic inches, of this cylinder.

Possible Answers:

 

 

 

 

Correct answer:

 

Explanation:

Since we are given the diameter, divide that value in half to find the radius.

 

Now plug this value into the equation for the volume of a cylinder.

 

 

Learning Tools by Varsity Tutors