Common Core: 7th Grade Math : Understand Fraction of Outcomes: CCSS.Math.Content.7.SP.C.8a

Study concepts, example questions & explanations for Common Core: 7th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #863 : Grade 7

Dan has a bag of \(\displaystyle 17\) marbles: \(\displaystyle 5\) red marbles, \(\displaystyle 2\), yellow marbles, and \(\displaystyle 7\) blue marbles, \(\displaystyle 1\) purple marble, and \(\displaystyle 2\) orange. If the first marble he draws is a blue marble, then what is the probability that he will draw another blue marble on his second try? 

 

Possible Answers:

\(\displaystyle \frac{7}{17}\)

\(\displaystyle \frac{7}{16}\)

\(\displaystyle \frac{3}{8}\)

\(\displaystyle \frac{6}{17}\)

Correct answer:

\(\displaystyle \frac{3}{8}\)

Explanation:

Dan starts out with \(\displaystyle 17\) marbles, and \(\displaystyle 7\) of the marbles are blue. This means that the probability of Dan drawing a blue marble from the bag on his first attempt is \(\displaystyle \frac{7}{17}\)

Now that Dan has taken a blue marble from the bag, we have \(\displaystyle 6\) blue marbles left, and a total of \(\displaystyle 16\) marbles left in the bag; thus, the probability of Dan drawing a blue marble on his second attempt is \(\displaystyle \frac{6}{16}=\frac{3}{8}\)

Example Question #864 : Grade 7

Dan has a bag of \(\displaystyle 17\) marbles: \(\displaystyle 5\) red marbles, \(\displaystyle 2\), yellow marbles, and \(\displaystyle 7\) blue marbles, \(\displaystyle 1\) purple marble, and \(\displaystyle 2\) orange. If the first marble he draws is a red marble, then what is the probability that he will draw another red marble on his second try? 

 

 

Possible Answers:

\(\displaystyle \frac{2}{3}\)

\(\displaystyle \frac{1}{4}\)

\(\displaystyle \frac{5}{16}\)

\(\displaystyle \frac{4}{17}\)

Correct answer:

\(\displaystyle \frac{1}{4}\)

Explanation:

Dan starts out with \(\displaystyle 17\) marbles, and \(\displaystyle 5\) of the marbles are red. This means that the probability of Dan drawing a red marble from the bag on his first attempt is \(\displaystyle \frac{5}{17}\)

Now that Dan has taken a red marble from the bag, we have \(\displaystyle 4\) red marbles left, and a total of \(\displaystyle 16\) marbles left in the bag; thus, the probability of Dan drawing a red marble on his second attempt is \(\displaystyle \frac{4}{16}=\frac{1}{4}\)

Learning Tools by Varsity Tutors