All Common Core: 7th Grade Math Resources
Example Questions
Example Question #9 : Informally Assess The Degree Of Visual Overlap In Data: Ccss.Math.Content.7.Sp.B.3
A university wanted to compare the heights of women on the basketball team and women on the swim team. The data is in the dot plots provided.
Using the dot plot for women swimmers, select the answer choice that provides the outlier for the set.
There is no outlier in this set
There is no outlier in this set
An outlier is a value in a data set that lies outside of the rang of the other data points. In this case all of the data points are together, and there are no big gaps between the heights. There is only between some of the points, which isn't enough to create an outlier.
Example Question #31 : Statistics & Probability
A university wanted to compare the heights of women on the basketball team and women on the swim team. The data is in the dot plots provided. Using the dot plots provided, what is the mean absolute deviation of the height of swimmers, rounded to the nearest tenth?
The mean absolute deviation is the average distance between each data point and the mean. So the first step to solving for the mean absolute deviation is to solve for the mean.
The mean is the average of a data set. In order to solve for the mean, we add all of our heights together, and divide by the number of people in our data set.
Next, we subtract to find the distance between each data point and , which is shown in the following table:
Now that we have all of the distances from the mean, we find the average of those differences to find the mean absolute deviation:
Example Question #731 : Grade 7
Two businesses monitored their profits for a week. Which business made the most profit, and what was the average profit per day of that business?
Business B-
Business A-
Business B-
Business A-
Business B-
This is a two part problem. First, we need to find out which business made the most profit during the week. To do this, we simply add up the profits from each day:
Business A:
Business B:
Business B made the most profit, so the answer choices that said Business A made the most profit can be eliminated.
To solve for the mean, we can take our added profits and divide them by the number of addends, which is :
Business A:
Business B:
Example Question #741 : Grade 7
Two businesses monitored their profits for a week. Which business made the most profit, and what was the average profit per day of that business?
Business B-
Business A-
Business B-
Business A-
Business B-
This is a two part problem. First, we need to find out which business made the most profit during the week. To do this, we simply add up the profits from each day:
Business A:
Business B:
Business B made the most profit, so the answer choices that said Business A made the most profit can be eliminated.
To solve for the mean, we can take our added profits and divide them by the number of addends, which is :
Business A:
Business B:
Example Question #741 : Grade 7
Two businesses monitored their profits for a week. Which business made the most profit, and what was the average profit per day of that business?
Business B-
Business A-
Business A-
Business B-
Business A-
This is a two part problem. First, we need to find out which business made the most profit during the week. To do this, we simply add up the profits from each day:
Business A:
Business B:
Business A made the most profit, so the answer choices that said Business B made the most profit can be eliminated.
To solve for the mean, we can take our added profits and divide them by the number of addends, which is :
Business A:
Business B:
Example Question #1 : Use Measure Of Center And Measure Of Variability To Compare Populations: Ccss.Math.Content.7.Sp.B.4
Two businesses monitored their profits for a week. Which business made the most profit, and what was the average profit per day of that business?
Business B-
Business A-
Business A-
Business B-
Business A-
This is a two part problem. First, we need to find out which business made the most profit during the week. To do this, we simply add up the profits from each day:
Business A:
Business B:
Business A made the most profit, so the answer choices that said Business B made the most profit can be eliminated.
To solve for the mean, we can take our added profits and divide them by the number of addends, which is :
Business A:
Business B:
Example Question #743 : Grade 7
Two businesses monitored their profits for a week. Which business made the most profit, and what was the average profit per day of that business?
Business B-
Business A-
Business A-
Business B-
Business B-
This is a two part problem. First, we need to find out which business made the most profit during the week. To do this, we simply add up the profits from each day:
Business A:
Business B:
Business B made the most profit, so the answer choices that said Business A made the most profit can be eliminated.
To solve for the mean, we can take our added profits and divide them by the number of addends, which is :
Business A:
Business B:
Example Question #744 : Grade 7
Two businesses monitored their profits for a week. Which business made the most profit, and what was the average profit per day of that business?
Business A-
Business B-
Business B-
Business A-
Business B-
This is a two part problem. First, we need to find out which business made the most profit during the week. To do this, we simply add up the profits from each day:
Business A:
Business B:
Business B made the most profit, so the answer choices that said Business A made the most profit can be eliminated.
To solve for the mean, we can take our added profits and divide them by the number of addends, which is :
Business A:
Business B:
Example Question #745 : Grade 7
A teacher is comparing two students' median test scores, as show in the dot plots below. Which student had a higher median score, and what was this student's median score?
Student B-
Student A-
Student B-
Student A-
Student A-
The median is the middle number of a set of data points.
To solve for the median, we list our data points in order from least to greatest, and then find the number in the middle.
Student A:
Student B:
Student A has the higher median score,
Example Question #2 : Use Measure Of Center And Measure Of Variability To Compare Populations: Ccss.Math.Content.7.Sp.B.4
A teacher is comparing two students' median test scores, as show in the dot plots below. Which student had a higher median score, and what was this student's median score?
Student A-
Student B-
Student A-
Student B-
Student A-
The median is the middle number of a set of data points.
To solve for the median, we list our data points in order from least to greatest, and then find the number in the middle.
Student A:
Student B:
Student A has the higher median score,