Common Core: 6th Grade Math : The Number System

Study concepts, example questions & explanations for Common Core: 6th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3451 : Operations

Use the computation shown to find the products:

\displaystyle \frac{\begin{array}[b]{r} \ 63\\ 3{\overline{\smash{)}189}}\\ -\ 18 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

Possible Answers:

\displaystyle 3\times 69

\displaystyle 3\times 72

\displaystyle 3\times 68

\displaystyle 3\times 63

\displaystyle 3\times 83

Correct answer:

\displaystyle 3\times 63

Explanation:

The computation shows that \displaystyle 189\div3=63 with a remainder of \displaystyle 0.

\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 63}\\ {\color{Green} 3}{\overline{\smash{)}189}}\\ -\ 18 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

So it must be that:

\displaystyle 3\times63=189+0

Simplify.

\displaystyle 3\times63=189

The correct answer is \displaystyle 3\times 63

Example Question #3 : Fluently Divide Multi Digit Numbers: Ccss.Math.Content.6.Ns.B.2

Use the computation shown to find the products:

\displaystyle \frac{\begin{array}[b]{r} \ 91\\ 3{\overline{\smash{)}273}}\\ -\ 27 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{3\ \ }\\ -\ \ \ 3\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

Possible Answers:

\displaystyle 3\times 79

\displaystyle 3\times 93

\displaystyle 3\times 91

\displaystyle 3\times 89

\displaystyle 3\times 97

Correct answer:

\displaystyle 3\times 91

Explanation:

The computation shows that \displaystyle 273\div3=91 with a remainder of \displaystyle 0.

\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 91}\\ {\color{Green} 3}{\overline{\smash{)}273}}\\ -\ 27 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 3\ \ }\\ -\ \ \ 3\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

So it must be that:

\displaystyle 3\times91=273+0

Simplify.

\displaystyle 3\times91=273

The correct answer is \displaystyle 3\times 91

Example Question #101 : Grade 6

Use the computation shown to find the products:

\displaystyle \frac{\begin{array}[b]{r} \ 21\\ 9{\overline{\smash{)}189}}\\ -\ 18 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

Possible Answers:

\displaystyle 9\times 21

\displaystyle 9\times 18

\displaystyle 9\times 23

\displaystyle 9\times 32

\displaystyle 9\times 27

Correct answer:

\displaystyle 9\times 21

Explanation:

The computation shows that \displaystyle 189\div9=21 with a remainder of \displaystyle 0.

\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 21}\\ {\color{Green} 9}{\overline{\smash{)}189}}\\ -\ 18 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

So it must be that:

\displaystyle 9\times21=189+0

Simplify.

\displaystyle 9\times21=189

The correct answer is \displaystyle 9\times 21

Example Question #3453 : Operations

Use the computation shown to find the products:

\displaystyle \frac{\begin{array}[b]{r} \ 31\\ 9{\overline{\smash{)}279}}\\ -\ 27 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

Possible Answers:

\displaystyle 9\times 36

\displaystyle 9\times 33

\displaystyle 9\times 31

\displaystyle 3\times 93

\displaystyle 9\times 93

Correct answer:

\displaystyle 9\times 31

Explanation:

The computation shows that \displaystyle 279\div9=31 with a remainder of \displaystyle 0.

\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 31}\\ {\color{Green} 9}{\overline{\smash{)}279}}\\ -\ 27 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 9\ \ }\\ -\ \ \ 9\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

So it must be that:

\displaystyle 9\times31=279+0

Simplify.

\displaystyle 9\times31=279

The correct answer is \displaystyle 9\times 31

Example Question #11 : Fluently Divide Multi Digit Numbers: Ccss.Math.Content.6.Ns.B.2

Use the computation shown to find the products:

\displaystyle \frac{\begin{array}[b]{r} \ 21\\ 7{\overline{\smash{)}147}}\\ -\ 14 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

Possible Answers:

\displaystyle 7\times 41

\displaystyle 7\times 17

\displaystyle 7\times 28

\displaystyle 7\times 21

\displaystyle 7\times 31

Correct answer:

\displaystyle 7\times 21

Explanation:

The computation shows that \displaystyle 147\div7=21 with a remainder of \displaystyle 0.

\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 21}\\ {\color{Green} 7}{\overline{\smash{)}147}}\\ -\ 14 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

So it must be that:

\displaystyle 7\times21=147+0

Simplify.

\displaystyle 7\times21=147

The correct answer is \displaystyle 7\times 21

Example Question #3821 : Ssat Elementary Level Quantitative (Math)

Use the computation shown to find the products:

\displaystyle \frac{\begin{array}[b]{r} \ 31\\ 7{\overline{\smash{)}217}}\\ -\ 21 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

Possible Answers:

\displaystyle 7\times 21

\displaystyle 7\times 23

\displaystyle 7\times 28

\displaystyle 7\times 34

\displaystyle 7\times 31

Correct answer:

\displaystyle 7\times 31

Explanation:

The computation shows that \displaystyle 217\div7=31 with a remainder of \displaystyle 0.

\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 31}\\ {\color{Green} 7}{\overline{\smash{)}217}}\\ -\ 21 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

So it must be that:

\displaystyle 7\times31=217+0

Simplify.

\displaystyle 7\times31=217

The correct answer is \displaystyle 7\times 31

Example Question #403 : How To Divide

Use the computation shown to find the products:

\displaystyle \frac{\begin{array}[b]{r} \ 41\\ 7{\overline{\smash{)}287}}\\ -\ 28 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

Possible Answers:

\displaystyle 7\times 31

\displaystyle 7\times 28

\displaystyle 7\times 41

\displaystyle 7\times 32

\displaystyle 7\times 21

Correct answer:

\displaystyle 7\times 41

Explanation:

The computation shows that \displaystyle 287\div7=41 with a remainder of \displaystyle 0.

\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 41}\\ {\color{Green} 7}{\overline{\smash{)}287}}\\ -\ 28 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 7\ \ }\\ -\ \ \ 7\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

So it must be that:

\displaystyle 7\times41=287+0

Simplify.

\displaystyle 7\times41=287

The correct answer is \displaystyle 7\times 41

Example Question #3456 : Operations

Use the computation shown to find the products:

\displaystyle \frac{\begin{array}[b]{r} \ 31\\ 6{\overline{\smash{)}186}}\\ -\ 18 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{6\ \ }\\ -\ \ \ 6\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

Possible Answers:

 \displaystyle 6\times 21

 \displaystyle 6\times 41

 \displaystyle 6\times 27

 \displaystyle 6\times 31

 \displaystyle 6\times 36

Correct answer:

 \displaystyle 6\times 31

Explanation:

The computation shows that \displaystyle 186\div6=31 with a remainder of \displaystyle 0.

\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 31}\\ {\color{Green} 6}{\overline{\smash{)}186}}\\ -\ 18 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 6\ \ }\\ -\ \ \ 6\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

So it must be that:

\displaystyle 6\times31=186+0

Simplify.

\displaystyle 6\times31=186

The correct answer is \displaystyle 6\times 31

 

Example Question #3457 : Operations

Use the computation shown to find the products:

\displaystyle \frac{\begin{array}[b]{r} \ 21\\ 8{\overline{\smash{)}168}}\\ -\ 16 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

Possible Answers:

\displaystyle 8\times 41

\displaystyle 8\times 31

\displaystyle 8\times 11

\displaystyle 8\times 27

\displaystyle 8\times 21

Correct answer:

\displaystyle 8\times 21

Explanation:

The computation shows that \displaystyle 168\div8=21 with a remainder of \displaystyle 0.

\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 21}\\ {\color{Green} 8}{\overline{\smash{)}168}}\\ -\ 16 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

So it must be that:

\displaystyle 8\times21=168+0

Simplify.

\displaystyle 8\times21=168

The correct answer is \displaystyle 8\times 21

Example Question #3458 : Operations

Use the computation shown to find the products:

\displaystyle \frac{\begin{array}[b]{r} \ 31\\ 8{\overline{\smash{)}248}}\\ -\ 24 \ \smash \ \end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

Possible Answers:

\displaystyle 8\times 21

\displaystyle 8\times 27

\displaystyle 8\times 32

\displaystyle 8\times 31

\displaystyle 8\times 41

Correct answer:

\displaystyle 8\times 31

Explanation:

The computation shows that \displaystyle 248\div8=31 with a remainder of \displaystyle 0.

\displaystyle \frac{\begin{array}[b]{r} \ {\color{Green} 31}\\ {\color{Green} 8}{\overline{\smash{)}248}}\\ -\ 24 \smash{\downarrow}\end{array}}{ \ \ \ \space \frac{\begin{array}[b]{r}00{ 8\ \ }\\ -\ \ \ 8\ \ \end{array}}{ \ \ \ \space} }

                  \displaystyle 0

So it must be that:

\displaystyle 8\times31=248+0

Simplify.

\displaystyle 8\times31=248

The correct answer is \displaystyle 8\times 31

Learning Tools by Varsity Tutors