Common Core: 5th Grade Math : Number & Operations in Base Ten

Study concepts, example questions & explanations for Common Core: 5th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #112 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 6.3\times10^3\) in standard form? 

Possible Answers:

\(\displaystyle 630\)

\(\displaystyle 6\textup,300\)

\(\displaystyle 630\textup,000\)

\(\displaystyle 63\textup,000\)

\(\displaystyle 6\textup,300\textup,0000\)

Correct answer:

\(\displaystyle 6\textup,300\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 3\) power, we move our decimal over \(\displaystyle 3\) places to the right. 

\(\displaystyle 6.3\rightarrow 6300.\)

Example Question #113 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 5.6\times10^1\) in standard form? 

Possible Answers:

\(\displaystyle 560\)

\(\displaystyle 5\textup,600\)

\(\displaystyle 56\)

\(\displaystyle 560\textup,000\)

\(\displaystyle 56\textup,000\)

Correct answer:

\(\displaystyle 56\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 1\) power, we move our decimal over \(\displaystyle 1\) place to the right. 

\(\displaystyle 5.6\rightarrow 56.\)

Example Question #114 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 2.3\times10^7\) in standard form? 

Possible Answers:

\(\displaystyle 230\textup,000\)

\(\displaystyle 2\textup,300\textup,000\)

\(\displaystyle 23\textup,000\)

\(\displaystyle 23\textup,000\textup,000\)

\(\displaystyle 230\textup,000\textup,000\)

Correct answer:

\(\displaystyle 230\textup,000\textup,000\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 7\) power, we move our decimal over \(\displaystyle 7\) places to the right. 

\(\displaystyle 2.3\rightarrow 23000000.\)

Example Question #115 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 3.7\times10^5\) in standard form? 

Possible Answers:

\(\displaystyle 37\textup,000\)

\(\displaystyle 370\)

\(\displaystyle 370\textup,000\)

\(\displaystyle 37\)

\(\displaystyle 3\textup,700\)

Correct answer:

\(\displaystyle 370\textup,000\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 5\) power, we move our decimal over \(\displaystyle 5\) places to the right. 

\(\displaystyle 3.7\rightarrow 370000.\)

Example Question #116 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 1.9\times10^2\) in standard form? 

Possible Answers:

\(\displaystyle 1\textup,900\)

\(\displaystyle 19\)

\(\displaystyle 19\textup,000\)

\(\displaystyle 190\)

\(\displaystyle 190\textup,000\)

Correct answer:

\(\displaystyle 190\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 2\) power, we move our decimal over \(\displaystyle 2\) places to the right. 

\(\displaystyle 1.9\rightarrow 190.\)

Example Question #117 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 2.5\times10^3\) in standard form? 

Possible Answers:

\(\displaystyle 25\)

\(\displaystyle 250\textup,000\)

\(\displaystyle 250\)

\(\displaystyle 2\textup,500\)

\(\displaystyle 25\textup,000\)

Correct answer:

\(\displaystyle 2\textup,500\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 3\) power, we move our decimal over \(\displaystyle 3\) places to the right. 

\(\displaystyle 2.5\rightarrow 2500.\)

Example Question #118 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 5.5\times10^1\) in standard form? 

Possible Answers:

\(\displaystyle 5\textup,500\)

\(\displaystyle 55\)

\(\displaystyle 550\)

\(\displaystyle 55\textup,000\)

\(\displaystyle 550\textup,000\)

Correct answer:

\(\displaystyle 55\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 1\) power, we move our decimal over \(\displaystyle 1\) place to the right. 

\(\displaystyle 5.5\rightarrow 55.\)

Example Question #121 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 5.1\times10^1\) in standard form? 

Possible Answers:

\(\displaystyle 5\textup,100\)

\(\displaystyle 51\)

\(\displaystyle 51\textup,000\)

\(\displaystyle 510\)

\(\displaystyle 510\textup,000\)

Correct answer:

\(\displaystyle 51\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 1\) power, we move our decimal over \(\displaystyle 1\) place to the right. 

\(\displaystyle 5.1\rightarrow 51.\)

Example Question #122 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 2.7\times10^7\) in standard form? 

Possible Answers:

\(\displaystyle 270\textup,000\)

\(\displaystyle 27\textup,000\textup,000\)

\(\displaystyle 27\textup,000\)

\(\displaystyle 2\textup,700\textup,000\)

\(\displaystyle 270\textup,000\textup,000\)

Correct answer:

\(\displaystyle 270\textup,000\textup,000\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 7\) power, we move our decimal over \(\displaystyle 7\) places to the right. 

\(\displaystyle 2.7\rightarrow 27000000.\)

Example Question #123 : Explain Patterns When Multiplying By A Power Of 10: Ccss.Math.Content.5.Nbt.A.2

What is \(\displaystyle 3.2\times10^5\) in standard form? 

Possible Answers:

\(\displaystyle 320\)

\(\displaystyle 320\textup,000\)

\(\displaystyle 3\textup,200\)

\(\displaystyle 32\)

\(\displaystyle 32\textup,000\)

Correct answer:

\(\displaystyle 320\textup,000\)

Explanation:

The power of \(\displaystyle 10\) tells us how to move our decimal. Because we have a positive \(\displaystyle 5\) power, we move our decimal over \(\displaystyle 5\) places to the right. 

\(\displaystyle 3.2\rightarrow 320000.\)

Learning Tools by Varsity Tutors