Common Core: 4th Grade Math : Number & Operations: €”Fractions

Study concepts, example questions & explanations for Common Core: 4th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #124 : Fractions

A baker used \(\displaystyle \frac{3}{7}\) of a package of sprinkles and \(\displaystyle \frac{6}{7}\) of a package of icing when decorating a cake. How much more icing than sprinkles did the baker use?

 

Possible Answers:

\(\displaystyle \frac{3}{7}\)

\(\displaystyle \frac{1}{7}\)

\(\displaystyle \frac{4}{7}\)

\(\displaystyle \frac{2}{7}\)

\(\displaystyle \frac{5}{7}\)

Correct answer:

\(\displaystyle \frac{3}{7}\)

Explanation:

The phrase, "how much more" tells as that we want to find the difference, so we subtract. 

\(\displaystyle \frac{6}{7}-\frac{3}{7}=\frac{3}{7}\)

3 7

Example Question #125 : Fractions

A baker used \(\displaystyle \frac{1}{7}\) of a pound of sprinkles and \(\displaystyle \frac{6}{7}\) of a pound of icing when decorating a cake. How much more icing than sprinkles did the baker use, in pounds?

Possible Answers:

\(\displaystyle \frac{2}{7}\)

\(\displaystyle \frac{6}{}7\)

\(\displaystyle \frac{5}{7}\)

\(\displaystyle \frac{4}{7}\)

\(\displaystyle \frac{3}{7}\)

Correct answer:

\(\displaystyle \frac{5}{7}\)

Explanation:

The phrase, "how much more" tells as that we want to find the difference, so we subtract. 

\(\displaystyle \frac{6}{7}-\frac{1}{7}=\frac{5}{7}\)

5 7

Example Question #126 : Fractions

A baker used \(\displaystyle \frac{1}{8}\) of a package of sprinkles and \(\displaystyle \frac{2}{8}\) of a package of icing when decorating a cake. How much more icing than sprinkles did the baker use?

Possible Answers:

\(\displaystyle \frac{4}{8}\)

\(\displaystyle \frac{2}{8}\)

\(\displaystyle \frac{3}{8}\)

\(\displaystyle \frac{5}{8}\)

\(\displaystyle \frac{1}{8}\)

Correct answer:

\(\displaystyle \frac{1}{8}\)

Explanation:

The phrase, "how much more" tells as that we want to find the difference, so we subtract. 

\(\displaystyle \frac{2}{8}-\frac{1}{8}=\frac{1}{8}\)

1 8

Example Question #127 : Fractions

A baker used \(\displaystyle \frac{2}{8}\) of a package of sprinkles and \(\displaystyle \frac{5}{8}\) of a package of icing when decorating a cake. How much more icing than sprinkles did the baker use?

 

Possible Answers:

\(\displaystyle \frac{3}{8}\)

\(\displaystyle \frac{4}{8}\)

\(\displaystyle \frac{2}{8}\)

\(\displaystyle \frac{1}{8}\)

\(\displaystyle \frac{5}{8}\)

Correct answer:

\(\displaystyle \frac{3}{8}\)

Explanation:

The phrase, "how much more" tells as that we want to find the difference, so we subtract. 

\(\displaystyle \frac{5}{8}-\frac{2}{8}=\frac{3}{8}\)

3 8

Example Question #128 : Fractions

A baker used \(\displaystyle \frac{3}{8}\) of a package of sprinkles and \(\displaystyle \frac{7}{8}\) of a package of icing when decorating a cake. How much more icing than sprinkles did the baker use?

Possible Answers:

\(\displaystyle \frac{4}{8}\)

\(\displaystyle \frac{3}{8}\)

\(\displaystyle \frac{5}{8}\)

\(\displaystyle \frac{6}{8}\)

\(\displaystyle \frac{7}{8}\)

Correct answer:

\(\displaystyle \frac{4}{8}\)

Explanation:

The phrase, "how much more" tells as that we want to find the difference, so we subtract. 

\(\displaystyle \frac{7}{8}-\frac{3}{8}=\frac{4}{8}\)

4 8

Example Question #129 : Fractions

A baker used \(\displaystyle \frac{2}{8}\) of a package of sprinkles and \(\displaystyle \frac{7}{8}\) of a package of icing when decorating a cake. How much more icing than sprinkles did the baker use?

 

Possible Answers:

\(\displaystyle \frac{6}{8}\)

\(\displaystyle \frac{2}{8}\)

\(\displaystyle \frac{5}{8}\)

\(\displaystyle \frac{3}{8}\)

\(\displaystyle \frac{4}{8}\)

Correct answer:

\(\displaystyle \frac{5}{8}\)

Explanation:

The phrase, "how much more" tells as that we want to find the difference, so we subtract. 

\(\displaystyle \frac{7}{8}-\frac{2}{8}=\frac{5}{8}\)

5 8

Example Question #130 : Fractions

A baker used \(\displaystyle \frac{1}{8}\) of a package of sprinkles and \(\displaystyle \frac{7}{8}\) of a package of icing when decorating a cake. How much more icing than sprinkles did the baker use?

 

Possible Answers:

\(\displaystyle \frac{3}{8}\)

\(\displaystyle \frac{6}{8}\)

\(\displaystyle \frac{2}{8}\)

\(\displaystyle \frac{4}{8}\)

\(\displaystyle \frac{5}{8}\)

Correct answer:

\(\displaystyle \frac{6}{8}\)

Explanation:

The phrase, "how much more" tells as that we want to find the difference, so we subtract. 

\(\displaystyle \frac{7}{8}-\frac{1}{8}=\frac{6}{8}\)

6 8

Example Question #591 : Number & Operations: €”Fractions

A baker used \(\displaystyle \frac{2}{4}\) of a package of sprinkles and \(\displaystyle \frac{3}{4}\) of a package of icing when decorating a cake. How much more icing than sprinkles did the baker use?

Possible Answers:

\(\displaystyle \frac{2}{4}\)

\(\displaystyle \frac{5}{4}\)

\(\displaystyle \frac{3}{4}\)

\(\displaystyle \frac{4}{4}\)

\(\displaystyle \frac{1}{4}\)

Correct answer:

\(\displaystyle \frac{1}{4}\)

Explanation:

The phrase, "how much more" tells as that we want to find the difference, so we subtract. 

\(\displaystyle \frac{3}{4}-\frac{2}{4}=\frac{1}{4}\)

1 4

Example Question #592 : Number & Operations: €”Fractions

A baker used \(\displaystyle \frac{4}{8}\) of a package of sprinkles and \(\displaystyle \frac{6}{8}\) of a package of icing when decorating a cake. How much more icing than sprinkles did the baker use?

Possible Answers:

\(\displaystyle \frac{5}{8}\)

\(\displaystyle \frac{4}{8}\)

\(\displaystyle \frac{2}{8}\)

\(\displaystyle \frac{6}{8}\)

\(\displaystyle \frac{3}{8}\)

Correct answer:

\(\displaystyle \frac{2}{8}\)

Explanation:

The phrase, "how much more" tells as that we want to find the difference, so we subtract. 

\(\displaystyle \frac{6}{8}-\frac{4}{8}=\frac{2}{8}\)

2 8

Example Question #593 : Number & Operations: €”Fractions

This year, Emily grew \(\displaystyle \frac{1}{6}\) of an inch, and her brother, Dan, grew \(\displaystyle \frac{4}{6}\) of an inch. How much more did Dan grow than Emily?

Possible Answers:

\(\displaystyle \frac{3}{6}\)

\(\displaystyle \frac{5}{6}\)

\(\displaystyle \frac{4}{6}\)

\(\displaystyle \frac{2}{6}\)

\(\displaystyle \frac{1}{6}\)

Correct answer:

\(\displaystyle \frac{3}{6}\)

Explanation:

The phrase, "how much more" tells as that we want to find the difference in how much they've grown. 

\(\displaystyle \frac{4}{6}-\frac{1}{6}=\frac{3}{6}\)

6

Learning Tools by Varsity Tutors