Common Core: 3rd Grade Math : Understanding Properties of Multiplication and the Relationship between Multiplication and Division

Study concepts, example questions & explanations for Common Core: 3rd Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Apply Properties Of Operations As Strategies To Multiply And Divide: Ccss.Math.Content.3.Oa.B.5

Select the answer that demonstrates the associative property of multiplication for \displaystyle 9\times3\times4

 

Possible Answers:

\displaystyle 9\times12=108 and \displaystyle 12\times9=108

\displaystyle (9\times3)\times4=108 and \displaystyle 9\times(3\times4)=108

\displaystyle (9\times2)\times4=108 and \displaystyle 9\times(3\times4)=108

\displaystyle (9\times1)\times4=108 and \displaystyle 9\times(1\times4)=108

\displaystyle (9\times3)\times4=108 and \displaystyle 9\times(2\times4)=108

Correct answer:

\displaystyle (9\times3)\times4=108 and \displaystyle 9\times(3\times4)=108

Explanation:

The associative property of multiplication says that we can group numbers in any order to multiply them and our product, or answer, will be the same. 

\displaystyle (9\times3)\times4=108 and \displaystyle 9\times(3\times4)=108

Example Question #21 : Apply Properties Of Operations As Strategies To Multiply And Divide: Ccss.Math.Content.3.Oa.B.5

Select the answer that demonstrates the associative property of multiplication for \displaystyle 1\times4\times3

 

 

Possible Answers:

\displaystyle (1\times4)\times3=12 and \displaystyle 1\times(3\times3)=12

\displaystyle (1\times2)\times3=12 and \displaystyle 1\times(2\times3)=12

\displaystyle (1\times5)\times3=12 and \displaystyle 1\times(4\times3)=12

\displaystyle (1\times4)\times3=12 and \displaystyle 1\times(4\times3)=12

\displaystyle 6\times2=12 and \displaystyle 2\times6=12

Correct answer:

\displaystyle (1\times4)\times3=12 and \displaystyle 1\times(4\times3)=12

Explanation:

The associative property of multiplication says that we can group numbers in any order to multiply them and our product, or answer, will be the same. 

\displaystyle (1\times4)\times3=12 and \displaystyle 1\times(4\times3)=12

Example Question #22 : Apply Properties Of Operations As Strategies To Multiply And Divide: Ccss.Math.Content.3.Oa.B.5

Select the answer that demonstrates the associative property of multiplication for \displaystyle 11\times2\times3

 

 

Possible Answers:

\displaystyle (11\times2)\times3=66 and \displaystyle 11\times(4\times3)=66

\displaystyle (11\times2)\times3=66 and \displaystyle 11\times(2\times3)=66

\displaystyle (11\times1)\times3=66 and \displaystyle 11\times(1\times3)=66

\displaystyle (11\times5)\times3=66 and \displaystyle 11\times(2\times3)=66

\displaystyle (11\times3)\times3=66 and \displaystyle 11\times(3\times3)=66

Correct answer:

\displaystyle (11\times2)\times3=66 and \displaystyle 11\times(2\times3)=66

Explanation:

The associative property of multiplication says that we can group numbers in any order to multiply them and our product, or answer, will be the same. 

\displaystyle (11\times2)\times3=66 and \displaystyle 11\times(2\times3)=66

Example Question #574 : Operations & Algebraic Thinking

Select the answer that demonstrates the associative property of multiplication for \displaystyle 4\times2\times7

 

 

Possible Answers:

\displaystyle (4\times3)\times7=56 and \displaystyle 4\times(2\times7)=56

\displaystyle (4\times5)\times7=56 and \displaystyle 4\times(5\times7)=56

\displaystyle (4\times2)\times7=56 and \displaystyle 4\times(3\times7)=56

\displaystyle (4\times1)\times7=56 and \displaystyle 4\times(1\times7)=56

\displaystyle (4\times2)\times7=56 and \displaystyle 4\times(2\times7)=56

Correct answer:

\displaystyle (4\times2)\times7=56 and \displaystyle 4\times(2\times7)=56

Explanation:

The associative property of multiplication says that we can group numbers in any order to multiply them and our product, or answer, will be the same. 

\displaystyle (4\times2)\times7=56 and \displaystyle 4\times(2\times7)=56

Example Question #21 : Understanding Properties Of Multiplication And The Relationship Between Multiplication And Division

Solve \displaystyle 22\div2 by finding the unknown factor. 

Possible Answers:

\displaystyle 10

\displaystyle 14

\displaystyle 13

\displaystyle 12

\displaystyle 11

Correct answer:

\displaystyle 11

Explanation:

A factor is a number that is multiplied by another number to produce a given number. 

In this case, the unknown factor is the number multiplied by \displaystyle 2 to get \displaystyle 22

\displaystyle 2\times11=22

Example Question #22 : Understanding Properties Of Multiplication And The Relationship Between Multiplication And Division

Solve \displaystyle 60\div3 by finding the unknown factor. 

Possible Answers:

\displaystyle 20

\displaystyle 15

\displaystyle 30

\displaystyle 22

\displaystyle 18

Correct answer:

\displaystyle 20

Explanation:

A factor is a number that is multiplied by another number to produce a given number. 

In this case, the unknown factor is the number multiplied by \displaystyle 3 to get \displaystyle 60

\displaystyle 3\times20=60

Example Question #577 : Operations & Algebraic Thinking

Solve \displaystyle 24\div4 by finding the unknown factor. 

Possible Answers:

\displaystyle 4

\displaystyle 6

\displaystyle 5

\displaystyle 7

\displaystyle 3

Correct answer:

\displaystyle 6

Explanation:

A factor is a number that is multiplied by another number to produce a given number. 

In this case, the unknown factor is the number multiplied by \displaystyle 4 to get \displaystyle 24

\displaystyle 4\times6=24

Example Question #578 : Operations & Algebraic Thinking

Solve \displaystyle 25\div5 by finding the unknown factor. 

 

Possible Answers:

\displaystyle 2

\displaystyle 1

\displaystyle 5

\displaystyle 4

\displaystyle 3

Correct answer:

\displaystyle 5

Explanation:

A factor is a number that is multiplied by another number to produce a given number. 

In this case, the unknown factor is the number multiplied by \displaystyle 5 to get \displaystyle 25

\displaystyle 5\times5=25

Example Question #22 : Understanding Properties Of Multiplication And The Relationship Between Multiplication And Division

Solve \displaystyle 42\div6 by finding the unknown factor. 

Possible Answers:

\displaystyle 5

\displaystyle 7

\displaystyle 9

\displaystyle 6

\displaystyle 8

Correct answer:

\displaystyle 7

Explanation:

A factor is a number that is multiplied by another number to produce a given number. 

In this case, the unknown factor is the number multiplied by \displaystyle 6 to get \displaystyle 42

\displaystyle 6\times7=42

Example Question #2 : Understand Division As An Unknown Factor Problem: Ccss.Math.Content.3.Oa.B.6

Solve \displaystyle 24\div8 by finding the unknown factor. 

Possible Answers:

\displaystyle 5

\displaystyle 6

\displaystyle 3

\displaystyle 7

\displaystyle 4

Correct answer:

\displaystyle 3

Explanation:

A factor is a number that is multiplied by another number to produce a given number. 

In this case, the unknown factor is the number multiplied by \displaystyle 8 to get \displaystyle 24

\displaystyle 8\times3=24

Learning Tools by Varsity Tutors