College Algebra : College Algebra

Study concepts, example questions & explanations for College Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #241 : College Algebra

How many zeroes does the following polynomial have?

Possible Answers:

Correct answer:

Explanation:

 is a degree 3 polynomial, so we don't have any easy formulas for calculating possible roots--we just have to check individual values to see if they work. We can use the rational root test to narrow the options down. Remember, if we have a polynomial of the form  then any rational root will be of the form p/q where p is a factor of  and q is a factor of . Fortunately in this case,  so we only need to check the factors of , which is -15. Let's start with the easiest one: 1.

 It doesn't work.

If we try the next number up, 3, we get this:

 It worked! So we know that a factor of our polynomial is . We can divide this factor out:

 

 

and now we need to see if  has any roots. We can actually solve quadratics so this is easier.

There aren't any real numbers that square to get -5 so this has no roots. Thus,  only has one root.

Example Question #242 : College Algebra

 is a polynomial function. .

True or false: By the Intermediate Value Theorem,  cannot have a zero on the interval .

Possible Answers:

True

False

Correct answer:

False

Explanation:

As a polynomial function, the graph of  is continuous. By the Intermediate Value Theorem, if  or , then there must exist a value  such that 

Set  and . It is not true that , so the Intermediate Value Theorem does not prove that there exists  such that . However, it does not disprove that such a value exists either. For example, observe the graphs below:

Untitled

Both are polynomial graphs fitting the given conditions, but the only the equation graphed at right has a zero on .

Example Question #62 : Polynomial Functions

True or false:

The polynomial  has  as a factor.

Possible Answers:

False

True

Correct answer:

True

Explanation:

One way to answer this question is as follows:

Let . By a corollary of the Factor Theorem,  is divisible by  if and only if the sum of its coefficients (accounting for minus symbols) is 0.  has 

as its coefficient sum, so  is indeed divisible by .

Example Question #242 : College Algebra

True or false:

The polynomial  has  as a factor.

Possible Answers:

False

True

Correct answer:

False

Explanation:

Let . By a corollary of the Factor Theorem,  is divisible by  if and only if the alternating sum of its coefficients (accounting for minus symbols) is 0.

To find this alternating sum, it is necessary to reverse the symbol before all terms of odd degree. In , there is one such terms, the  term, so the alternating coefficient sum is  

,

so  is not divisible by .

Example Question #64 : Polynomial Functions

 is a polynomial function.  and .

True or false: By the Intermediate Value Theorem,  must have a zero on the interval .

Possible Answers:

True

False

Correct answer:

True

Explanation:

As a polynomial function, the graph of  is continuous. By the Intermediate Value Theorem, if  or , then there must exist a value  such that 

Setting , and looking at the second condition alone, this becomes: If , then there must exist a value  such that  - that is,  must have a zero on . The conditions of this statement are met , since   - and  - so  does have a zero on this interval.

Example Question #7 : Graphing Polynomials

Let  be an even polynomial function with  as a factor. 

True or false: It follows that  is also a factor of .

Possible Answers:

False

True

Correct answer:

True

Explanation:

By the Factor Theorem,  is a factor of a polynomial  if and only if . It is given that  is a factor of , so it follows that .

 is an even function, so, by definition, for all  in its domain, . Setting ; by substitution, . It follows that  is also a factor of , making the statement true. 

Example Question #242 : College Algebra

Which of the following graphs matches the function ?

Possible Answers:

Graph1

Graph4

Graph3

Graph2

Graph

Correct answer:

Graph

Explanation:

Start by visualizing the graph associated with the function :

Graph5

Terms within the parentheses associated with the squared x-variable will shift the parabola horizontally, while terms outside of the parentheses will shift the parabola vertically. In the provided equation, 2 is located outside of the parentheses and is subtracted from the terms located within the parentheses; therefore, the parabola in the graph will shift down by 2 units. A simplified graph of  looks like this:

Graph6

Remember that there is also a term within the parentheses. Within the parentheses, 1 is subtracted from the x-variable; thus, the parabola in the graph will shift to the right by 1 unit. As a result, the following graph matches the given function  :

Graph

Example Question #1 : Finding Roots

Find the roots of the function:

Possible Answers:

Correct answer:

Explanation:

Factor:

Double check by factoring:

Add together:

Therefore:

Example Question #2 : Finding Roots

Solve for x.

Possible Answers:

x = –4, –3

x = 5, 2

x = –5, –2

x = 5

x = 4, 3

Correct answer:

x = 5, 2

Explanation:

1) Split up the middle term so that factoring by grouping is possible.

Factors of 10 include:

1 * 10= 10    1 + 10 = 11

2 * 5 =10      2 + 5 = 7

–2 * –5 = 10    –2 + –5 = –7 Good!

2) Now factor by grouping, pulling "x" out of the first pair and "-5" out of the second.

3) Now pull out the common factor, the "(x-2)," from both terms.

4) Set both terms equal to zero to find the possible roots and solve using inverse operations.

x – 5 = 0,  x = 5

x – 2 = 0, x = 2

Example Question #243 : College Algebra

Solve for :

Possible Answers:

Correct answer:

Explanation:

To solve for , you need to isolate it to one side of the equation. You can subtract the  from the right to the left. Then you can add the 6 from the right to the left:

Next, you can factor out this quadratic equation to solve for . You need to determine which factors of 8 add up to negative 6:

Finally, you set each binomial equal to 0 and solve for :

Learning Tools by Varsity Tutors