All Calculus AB Resources
Example Questions
Example Question #12 : Determine Local Linearity And Linearization
Find the equation of the line perpendicular to the line tangent to the following function at x=1, and passing through (0, 6):
To find the equation of the line perpendicular to the tangent line to the function at a certain point, we must find the slope of the tangent line to the function, which is the derivative of the function at that point:
The derivative was found using the following rules:
Now, we evaluate the derivative at the given point:
We now know the slope of the tangent line, but because the line we are solving for is perpendicular to this line, its slope is the negative reciprocal, .
With a slope and a point, we can now find the equation of the line:
Example Question #13 : Determine Local Linearity And Linearization
Find the equation of the line that is tangent to the graph of when .
First, evaluate .
Then, to find the slope of the tangent line, find .
, so .
Therefore, the equation of the tangent line is
.
Example Question #364 : Calculus Ab
Find the minimum value of
In order to find the extreme value, we need to take the derivative of the function.
After setting it equal to 0, we see that the only candidate is for . After setting into , we get the coordinate as an extreme value. To confirm it is a minimum we can plot the function.
Example Question #51 : Contextual Applications Of Derivatives
Let . Find the equation of the line tangent to at the point .
To find the equation of a tangent line, we need two things: The tangent point, which is given as , and the slope of the tangent line at that point, which is the derivative at that point.
To find the derivative at the point, we will find , using derivative rules. Then we will plug the given point's x-coordinate into and that will give us the slope we need.
Finding the derivative of will require the power rule for each term. Recall that the power rule is . For the , the power rule effectively removes the . Also, the derivative of a constant is , so the will drop when we get the derivative.
Applying these rules, we get
Now that we have the derivative, we effectively have a formula to find the slope of a tangent line at any point we choose. The question asks for the tangent line at . So we plug the x-coordinate of the point into the derivative function to find the slope.
The last step is to use the point-slope equation of a line to construct the equation we need. The point-slope equation is , where is the slope, and is the given point.
Plugging our slope into , and our original point in for and , we get
Now we can solve for to compare to the answer choices.
This is the equation of the tangent line at the given point. We have an answer.
Example Question #14 : Determine Local Linearity And Linearization
Let . Find the equation of the line tangent to at the point .
To find the equation of a tangent line at a point, we will need the slope of the function at that point. To find this, we find the derivative of the function.
Finding this derivative will use trigonometric function derivative rules, and the product rule.
Recall that the derivative of is . This takes care of the first term.
To find the derivative of the next term, we need to be careful with our signs. We will use the product rule which results in two terms. The negative sign can mess us up if we aren't careful. The way we will handle this is to associate the minus sign with the term when doing the product rule. So we will find the derivative of . The product rule is as follows, where the red and blue are the two factors of the term we are differentiating. In our case, and .
by the special case of the power rule. The drops.
by the trigonometric derivative rules.
Putting these together we get the derivative of to be
Simplifying, we get
Assembling all the pieces of the derivative together, we have found
Combining like terms gives
Now we have a formula for the tangent slope of at any point. The point we care about is . To find this point's tangent slope, we will plug its x-coordinate into our derivative.
Simplifying gives
So we have found the slope of the tangent line at our point, , is .
The last step is the point-slope equation of a line, , where is the slope and is the given point. Plugging in for , for , and for , we get
Solving for , we get
This is the equation of the tangent line at the given point. We have an answer.
Example Question #1 : Use Mean Value Theorem, Extreme Value Theorem, And Critical Points
Find the area of the region enclosed by the parabola and .
The two curves intersect in between and , which can be found by solving the quadratic equation .
To solve for the area between curves, and , we use the formula
For our problem:
evaluated from to which yields .
Example Question #2 : Use Mean Value Theorem, Extreme Value Theorem, And Critical Points
Find the area under the curve between .
To find the area under the curve, we need to integrate. In this case, it is a definite integral.
Example Question #3 : Analytical Applications Of Derivatives
Find the area bounded by
The easiest way to look at this is to plot the graphs. The shaded area is the actual area that we want to compute. We can first find area bounded by and in the first quadrant and subtract the excessive areas. The area of that rectangle box is 6. The area under the curve is .
The area of the triangle above the curve is 2. Therefore, the area bounded is .
Example Question #1 : Use Mean Value Theorem, Extreme Value Theorem, And Critical Points
Example Question #5 : Analytical Applications Of Derivatives
Consider the region bounded by the functions
and
between and . What is the area of this region?
The area of this region is given by the following integral:
or
Taking the antiderivative gives
, evaluated from to .
, and
.
Thus, the area is given by: