Calculus 3 : Double Integration over General Regions

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Double Integration Over General Regions

Calculate the following Integral.

\(\displaystyle \int_{0}^{1}\int_{x}^{x^2} xy^2 dydx\)

Possible Answers:

\(\displaystyle -\frac{3}{120}\)

\(\displaystyle \frac{1}{120}\)

\(\displaystyle -\frac{1}{120}\)

\(\displaystyle -120\)

\(\displaystyle 120\)

Correct answer:

\(\displaystyle -\frac{3}{120}\)

Explanation:

\(\displaystyle \int_{0}^{1}\int_{x}^{x^2} xy^2 dydx=\int_{0}^{1}\Big(\int_{x}^{x^2} xy^2 dy\Big)dx\)

 

Lets deal with the inner integral first.

\(\displaystyle \int_{x}^{x^2}xy^2 dy\)

\(\displaystyle \int_{x}^{x^2}xy^2 dy=\frac{1}{3}y^3x\Big|_{x}^{x^2}\)

\(\displaystyle =(\frac{1}{3}(x^2)^3\cdot x)-(\frac{1}{3}x^3\cdot x)\)

\(\displaystyle =\frac{1}{3}x^7-\frac{1}{3}x^4\)

 

Now we evaluate this expression in the outer integral.

 

\(\displaystyle \int_{0}^{1} \frac{1}{3}x^7-\frac{1}{3}x^4dx\)

\(\displaystyle =\frac{1}{3}\int_{0}^{1} x^7-x^4dx\)

\(\displaystyle =\frac{1}{3}\Big( \frac{1}{8}x^8-\frac{1}{5}x^5\Big)\Big|_{0}^{1}\)

\(\displaystyle =\frac{1}{3}\Big(\frac{1}{8}1^8-\frac{1}{5}1^5\Big)-\frac{1}{3}\Big(\frac{1}{8}0^8-\frac{1}{5}0^5\Big)\)

\(\displaystyle =\frac{1}{3}\Big(\frac{1}{8}-\frac{1}{5}\Big)-\frac{1}{3}\Big(0-0\Big)\)

 

\(\displaystyle =\frac{1}{3}\Big(\frac{5}{40}-\frac{8}{40}\Big)\)

\(\displaystyle =\frac{1}{3}\Big(-\frac{3}{40}\Big)=-\frac{3}{120}\)

 

 

Example Question #1 : Double Integration Over General Regions

Calculate the definite integral of the function \(\displaystyle f(x,y)\), given below as 

\(\displaystyle f(x,y)= 3x^3\sqrt{y}+ \sin(2x)\cos(4y)\)

 

Possible Answers:

Cannot be solved.

\(\displaystyle \iint f(x,y)dxdy=x^4y^{3/2}-\cos(2x)\sin(4y)+C\)

\(\displaystyle \iint f(x,y)dxdy=\frac{1}{2}x^4y^{3/2}+\frac{1}{8}\cos(2x)\sin(4y)+C\)

\(\displaystyle \iint f(x,y)dxdy=\frac{1}{2}x^4y^{3/2}-\frac{1}{8}\cos(2x)\sin(4y)\)

\(\displaystyle \iint f(x,y)dxdy=\frac{1}{2}x^4y^{3/2}-\frac{1}{8}\cos(2x)\sin(4y)+C\)

Correct answer:

\(\displaystyle \iint f(x,y)dxdy=\frac{1}{2}x^4y^{3/2}-\frac{1}{8}\cos(2x)\sin(4y)+C\)

Explanation:

Because there are no nested terms containing both \(\displaystyle x\) and \(\displaystyle y\), we can rewrite the integral as

\(\displaystyle \iint f(x,y)dxdy=\int3x^3dx \int \sqrt{y}dy+\int\sin(2x)dx \int \cos(4y)dy\)

This enables us to evaluate the double integral and the product of two independent single integrals.  From the integration rules from single-variable calculus, we should arrive at the result

\(\displaystyle \iint f(x,y)dxdy=\frac{1}{2}x^4y^{3/2}-\frac{1}{12}\cos(2x)\sin(4y)+C\).

 

Example Question #181 : Double Integrals

Evaluate the following integral on the region specified:

\(\displaystyle \int\int_R(x^3y)\:dxdy\)

Where R is the region defined by the conditions:

\(\displaystyle 0\leq x \leq 2, \; 1\leq y \leq2\)

Possible Answers:

\(\displaystyle 2\sqrt{2}\)

\(\displaystyle 4\)

\(\displaystyle 7.5\)

\(\displaystyle 4\sqrt{2}\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 6\)

Explanation:

\(\displaystyle \int^2_1\int^2_0(x^3y)\:dxdy=\int^2_1(\frac{x^4y}{4}|^2_0)dy\int^2_14y\:dy =2y^2|^2_1=2(4-1)=2(3)=6\)

Example Question #2 : Double Integration Over General Regions

Evaluate:

\(\displaystyle \int \int x^2dxdy\)

Possible Answers:

\(\displaystyle \frac{x^3}{3}+C\)

\(\displaystyle \frac{x^3y}{3}+C\)

\(\displaystyle \frac{x^3}{3}+y+C\)

\(\displaystyle \frac{x^2y}{3}+C\)

Correct answer:

\(\displaystyle \frac{x^3y}{3}+C\)

Explanation:

Because the x and y terms in the integrand are independent of one another, we can move them to their respective integrals:

\(\displaystyle \int dy \cdot \int x^2dx= \frac{x^3y}{3}+C\)

We used the following rules for integration:

\(\displaystyle \int x^ndx=\frac{x^{n+1}}{n+1}+C\)\(\displaystyle \int dx=x+C\)

Example Question #3 : Double Integration Over General Regions

Evaluate the following integral. 

\(\displaystyle \int_{0}^{1}\int_{2}^{3}\left (5x^4y \right )dydx\)

Possible Answers:

\(\displaystyle \frac{5}{2}\)

\(\displaystyle -2\)

\(\displaystyle 1\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle \frac{5}{2}\)

Explanation:

First, you must evaluate the integral with respect to y (because of the notation \(\displaystyle dydx\)).

Using the rules of integration, this gets us 

\(\displaystyle 5x^4\frac{y^2}{2}dx\).

Evaluated from y=2 to y=3, we get 

\(\displaystyle 5x^4(\frac{9}{2}-\frac{4}{2})dx=\frac{25}{2}x^4dx\).

Integrating this with respect to x gets us \(\displaystyle \frac{5}{2}x^5\), and evaluating from x=0 to x=1, you get  \(\displaystyle \frac{5}{2}\).

Example Question #4 : Double Integration Over General Regions

Compute the following integral: 

\(\displaystyle \int_{1}^{2}\int_{0}^{2}(x^3+y^2)dydx\)

Possible Answers:

\(\displaystyle \frac{120}{15}\)

\(\displaystyle 11\)

\(\displaystyle \frac{130}{12}\)

\(\displaystyle \frac{122}{12}\)

Correct answer:

\(\displaystyle \frac{122}{12}\)

Explanation:

First, you must evaluate the integral with respect to y and solving within the bounds.

In doing so, you get \(\displaystyle x^3y+\frac{y^3}{3}\) and you evaluate for y from 0 to 2.

This gets you 

\(\displaystyle \int_{1}^{2}(2x^3+\frac{8}{3})dx\).

This time evaluating the integral with respect to x gets you 

\(\displaystyle \frac{2x^4}{4}+\frac{8}{3}x\).

Evaluating for x from 1 to 2 gets you 

\(\displaystyle \frac{122}{12}\).

Example Question #7 : Double Integration Over General Regions

Evaluate the double integral.

\(\displaystyle \int_{0}^{7} \int_{0}^{5} 2x+7\,dxdy\)

Possible Answers:

\(\displaystyle 710\)

\(\displaystyle 125\)

\(\displaystyle 365\)

\(\displaystyle 420\)

Correct answer:

\(\displaystyle 420\)

Explanation:

When solving double integrals, we compute the integral on the inside first.

\(\displaystyle \int_{0}^{7} \int_{0}^{5} 2x+7\,dxdy=\int_0^7x^2+7x|_{x=0}^{x=5}\,dy\)

\(\displaystyle =\int_0^75^2+7(5)-0^2+7(0)\,dy\)

\(\displaystyle =\int_0^760\,dy\)

\(\displaystyle =60y|_{y=0}^{y=7}\)

\(\displaystyle =420-0\)

\(\displaystyle =420\)

Example Question #1 : Double Integration Over General Regions

Evaluate the double integral.

\(\displaystyle \int_{0}^{6} \int_{0}^{4} 6y+8\,dxdy\)

Possible Answers:

\(\displaystyle 540\)

\(\displaystyle 624\)

\(\displaystyle 312\)

\(\displaystyle 315\)

Correct answer:

\(\displaystyle 624\)

Explanation:

When solving double integrals, we compute the integral on the inside first.

\(\displaystyle \int_{0}^{6} \int_{0}^{4} 6y+8\,dxdy=\int_0^66xy+8x|_{x=0}^{x=4}\,dy\)

\(\displaystyle =\int_0^6 6(4)y+8(4)-6(0)y-8(0)\,dy\)

\(\displaystyle =\int_0^624y+32\,dy\)

\(\displaystyle =12y^2+32y|_{y=0}^{y=6}\)

\(\displaystyle =12(6)^2+32(6)-[12(0)^2+32(0)]\)

\(\displaystyle =624\)

Example Question #6 : Double Integration Over General Regions

Evaluate the double integral

\(\displaystyle \int_{0}^{3} \int_{0}^{4} 3x+6\,dydx\)

 

Possible Answers:

\(\displaystyle 324\)

\(\displaystyle 256\)

\(\displaystyle 126\)

\(\displaystyle 200\)

Correct answer:

\(\displaystyle 126\)

Explanation:

When solving double integrals, we compute the integral on the inside first.

\(\displaystyle \int_{0}^{3} \int_{0}^{4} 3x+6\,dydx=\int_0^33xy+6y|_{y=0}^{y=4}\,dx\)

\(\displaystyle =\int_0^33x(4)+6(4)-[3x(0)+6(0)]\,dx\)

\(\displaystyle =\int_0^312x+24\,dx\)

\(\displaystyle =6x^2+24x|_{x=0}^{x=3}\)

\(\displaystyle =6(3)^2+24(3)-6(0)^2-24(0)\)

\(\displaystyle =126\)

Example Question #7 : Double Integration Over General Regions

Evaluate the integral \(\displaystyle \int_{1}^{3}\int_{0}^{2}(xy^3)dxdy\)

Possible Answers:

\(\displaystyle 9\)

\(\displaystyle 8\)

\(\displaystyle 10\)

\(\displaystyle -10\)

Correct answer:

\(\displaystyle 10\)

Explanation:

First, you must evaluate the integral with respect to x. This gets you \(\displaystyle y^3\frac{x^2}{2}dy\) evaluated from \(\displaystyle x=0\) to \(\displaystyle x=2\). This becomes \(\displaystyle \int_{1}^{3}2y^3dy\). Solving this integral with respect to y gets you \(\displaystyle \frac{1}{2}y^4\). Evaluating from \(\displaystyle y=1\) to \(\displaystyle y=3\), you get \(\displaystyle \frac{1}{2}(\frac{3^4}{4}-\frac{1}{4})=10\).

Learning Tools by Varsity Tutors