Calculus 3 : Calculus 3

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #71 : Triple Integration In Cartesian Coordinates

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{-2}^{3}\int_{2}^{6}\int_{-1}^{3}(2\cdot3^ycos(4x))dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle -2119.1\)

\(\displaystyle -63.31\)

\(\displaystyle -114.99\)

\(\displaystyle 21.98\)

Correct answer:

\(\displaystyle -2119.1\)

Explanation:

\(\displaystyle \begin{align*}&\text{Performing a triple integral, the order of integration does}\\&\text{not entirely matter.}\\&\text{For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{-2}^{3}\int_{2}^{6}\int_{-1}^{3}(2\cdot3^ycos(4x))dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{-2}^{3}\int_{2}^{6}\int_{-1}^{3}(2\cdot3^ycos(4x))dxdydz=\int_{-2}^{3}\int_{2}^{6}(\frac{(3^ysin(4x))}{2})dydz|_{-1}^{3}\\&\int_{-2}^{3}\int_{2}^{6}(3^y\cdot(\frac{sin(4)}{2}+\frac{ sin(12)}{2}))dydz=\int_{-2}^{3}(\frac{(3^y\cdot(sin(4) + sin(12)))}{(2ln(3))})dz|_{2}^{6}\\&\int_{-2}^{3}(\frac{(360\cdot(sin(4) + sin(12)))}{ln(3)})dz=\frac{(360z\cdot(sin(4) + sin(12)))}{ln(3)}dz|_{-2}^{3}=-2119.1\end{align*}\)

Example Question #71 : Triple Integration In Cartesian Coordinates

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{4}^{9}\int_{-8}^{4}\int_{-3}^{1}(sin(z + 2)\cdot(3y +\frac{ (2\cdot3^{(x + 2)})}{53}))dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle -264.75\)

\(\displaystyle 41.9\)

\(\displaystyle -41.9\)

Correct answer:

\(\displaystyle -264.75\)

Explanation:

\(\displaystyle \begin{align*}&\text{Performing a triple integral, the order of integration does}\\&\text{not entirely matter.}\\&\text{For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{4}^{9}\int_{-8}^{4}\int_{-3}^{1}(sin(z + 2)\cdot(3y +\frac{ (2\cdot3^{(x + 2)})}{53}))dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{4}^{9}\int_{-8}^{4}\int_{-3}^{1}(sin(z + 2)\cdot(3y +\frac{ (2\cdot3^{(x + 2))}}{53}))dxdydz=\int_{4}^{9}\int_{-8}^{4}(\frac{(3sin(z + 2)\cdot(6\cdot3^x + 53xyln(3)))}{(53ln(3))})dydz|_{-3}^{1}\\&\int_{4}^{9}\int_{-8}^{4}(\frac{(4sin(z + 2)\cdot(477yln(3) + 40))}{(159ln(3))})dydz=\int_{4}^{9}(\frac{(2sin(z + 2)\cdot(477yln(3) + 40)^{2})}{(75843ln(3)^{2})})dz|_{-8}^{4}\\&\int_{4}^{9}(-\frac{(32sin(z + 2)\cdot(477ln(3) - 20))}{(53ln(3))})dz=\frac{(32cos(z + 2)\cdot(477ln(3) - 20))}{(53ln(3))}dz|_{4}^{9}=-264.75\end{align*}\)

Example Question #71 : Triple Integration In Cartesian Coordinates

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{-2}^{1}\int_{3}^{5}\int_{-2}^{-1}(\frac{(43e^{(-2y)})}{(10x^{2})})dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle 12.9\)

\(\displaystyle 0.01\)

\(\displaystyle 117.1\)

\(\displaystyle 40.6\)

Correct answer:

\(\displaystyle 0.01\)

Explanation:

\(\displaystyle \begin{align*}&\text{Performing a triple integral, the order of integration does}\\&\text{not entirely matter.}\\&\text{For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{-2}^{1}\int_{3}^{5}\int_{-2}^{-1}(\frac{(43e^{(-2y)})}{(10x^{2})})dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{-2}^{1}\int_{3}^{5}\int_{-2}^{-1}(\frac{(43e^{(-2y)})}{(10x^{2})})dxdydz=\int_{-2}^{1}\int_{3}^{5}(-\frac{(43e^{(-2y)})}{(10x)})dydz|_{-2}^{-1}\\&\int_{-2}^{1}\int_{3}^{5}(\frac{(43e^{(-2y)})}{20})dydz=\int_{-2}^{1}(-\frac{(43e^{(-2y)})}{40})dz|_{3}^{5}\\&\int_{-2}^{1}(\frac{(43e^{(-10)}\cdot(e^{}(4) - 1))}{40})dz=\frac{(43ze^{(-10)}\cdot(e^{}(4) - 1))}{40}dz|_{-2}^{1}=0.0078476\end{align*}\)

Example Question #74 : Triple Integration In Cartesian Coordinates

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{-10}^{5}\int_{-4}^{1}\int_{-3}^{2}(\frac{(49\cdot2^zcos(3y)sin(4x))}{4})dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle -18.44\)

\(\displaystyle -1.9\)

\(\displaystyle -0.95\)

\(\displaystyle -0.41\)

Correct answer:

\(\displaystyle -18.44\)

Explanation:

\(\displaystyle \begin{align*}&\text{Order of integration does not entirely matter.}\\&\text{Considering:}\\&\int_{-10}^{5}\int_{-4}^{1}\int_{-3}^{2}(\frac{(49\cdot2^zcos(3y)sin(4x))}{4})dxdydz\\&\text{Take it step by step:}\\&\int_{-10}^{5}\int_{-4}^{1}\int_{-3}^{2}(\frac{(49\cdot2^zcos(3y)sin(4x))}{4})dxdydz=\int_{-10}^{5}\int_{-4}^{1}(-\frac{(49\cdot2^zcos(4x)cos(3y))}{16})dydz|_{-3}^{2}\\&\int_{-10}^{5}\int_{-4}^{1}(-\frac{(49\cdot2^zcos(3y)\cdot(\frac{cos(8)}{4}-\frac{ cos(12)}{4}))}{4})dydz=\int_{-10}^{5}(-\frac{(49\cdot2^zsin(3y)\cdot(\frac{cos(8)}{4}-\frac{ cos(12)}{4}))}{12})dz|_{-4}^{1}\\&\int_{-10}^{5}(-\frac{(49\cdot2^z\cdot(sin(3) + sin(12))\cdot(cos(8) - cos(12)))}{48})dz=-\frac{(49\cdot2^z\cdot(\frac{sin(4)}{2}-\frac{ sin(5)}{2}+\frac{ sin(9)}{2}+\frac{ sin(11)}{2}-\frac{ sin(15)}{2}+\frac{ sin(20)}{2}-\frac{ sin(24)}{2}))}{(48ln(2))}dz|_{-10}^{5}=-18.44\end{align*}\)

Example Question #681 : Calculus 3

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{-2}^{1}\int_{2}^{6}\int_{4}^{7}(\frac{(11x^{2})}{(35yz^{2})})dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle oh\)

\(\displaystyle no\)

Correct answer:

\(\displaystyle oh\)

Explanation:

\(\displaystyle \begin{align*}&\text{Performing a triple integral, the order of integration does}\\&\text{not entirely matter.}\\&\text{For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{-2}^{1}\int_{2}^{6}\int_{4}^{7}(\frac{(11x^{2})}{(35yz^{2})})dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{-2}^{1}\int_{2}^{6}\int_{4}^{7}(\frac{(11x^{2})}{(35yz^{2})})dxdydz=\int_{-2}^{1}\int_{2}^{6}(\frac{(11x^{3})}{(105yz^{2})})dydz|_{4}^{7}\\&\int_{-2}^{1}\int_{2}^{6}(\frac{29.229}{(yz^{2})})dydz=\int_{-2}^{1}(\frac{(29.229ln(y))}{z^{2}})dz|_{2}^{6}\\&\int_{-2}^{1}(\frac{32.111}{z^{2}})dz=-\frac{32.111}{z}dz|_{-2}^{1}=Inf\end{align*}\)

Example Question #76 : Triple Integration In Cartesian Coordinates

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{2}^{5}\int_{-6}^{-1}\int_{9}^{14}(\frac{(sin(3y)e^{(4x)})}{(6z)})dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle -8.9522\cdot10^{22}\)

\(\displaystyle 4.393\cdot10^{22}\)

\(\displaystyle 0\)

\(\displaystyle -1.3021\cdot10^{6}\)

Correct answer:

\(\displaystyle 4.393\cdot10^{22}\)

Explanation:

\(\displaystyle \begin{align*}&\text{Performing a triple integral, the order of integration does}\\&\text{not entirely matter.}\\&\text{For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{2}^{5}\int_{-6}^{-1}\int_{9}^{14}(\frac{(sin(3y)e^{(4x)})}{(6z)})dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{2}^{5}\int_{-6}^{-1}\int_{9}^{14}(\frac{(sin(3y)e^{(4x)})}{(6z)})dxdydz=\int_{2}^{5}\int_{-6}^{-1}(\frac{(sin(3y)e^{(4x)})}{(24z)})dydz|_{9}^{14}\\&\int_{2}^{5}\int_{-6}^{-1}(\frac{(8.7152\cdot10^{22}sin(3y))}{z})dydz=\int_{2}^{5}(-\frac{(2.9051\cdot10^{22}cos(3y))}{z})dz|_{-6}^{-1}\\&\int_{2}^{5}(\frac{4.7943\cdot10^{22}}{z})dz=4.7943\cdot10^{22}ln(z)dz|_{2}^{5}=4.393\cdot10^{22}\end{align*}\)

Example Question #202 : Multiple Integration

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{-8}^{-4}\int_{7}^{8}\int_{-10}^{-8}(3z + 2cos(3x)cos(y + 1))dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle 28.77\)

\(\displaystyle -143.87\)

\(\displaystyle 431.62\)

\(\displaystyle -719.37\)

Correct answer:

\(\displaystyle -143.87\)

Explanation:

\(\displaystyle \begin{align*}&\text{Performing a triple integral, the order of integration does}\\&\text{not entirely matter.}\\&\text{For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{-8}^{-4}\int_{7}^{8}\int_{-10}^{-8}(3z + 2cos(3x)cos(y + 1))dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{-8}^{-4}\int_{7}^{8}\int_{-10}^{-8}(3z + 2cos(3x)cos(y + 1))dxdydz=\int_{-8}^{-4}\int_{7}^{8}(3xz +\frac{ (2cos(y + 1)sin(3x))}{3})dydz|_{-10}^{-8}\\&\int_{-8}^{-4}\int_{7}^{8}(6z - 0.054969cos(y + 1))dydz=\int_{-8}^{-4}(6yz - 0.10994cos(0.5y + 0.5)sin(0.5y + 0.5))dz|_{7}^{8}\\&\int_{-8}^{-4}(6z + 0.03173)dz=0.03173z + 3z^{2}dz|_{-8}^{-4}=-143.87\end{align*}\)

Example Question #78 : Triple Integration In Cartesian Coordinates

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{10}^{12}\int_{-7}^{-4}\int_{-10}^{-9}(e^{(3z)}\cdot(y +\frac{ 43}{10}))dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle 1.29\cdot10^{15}\)

\(\displaystyle 2.58\cdot10^{16}\)

\(\displaystyle -2.58\cdot10^{16}\)

\(\displaystyle -5.16\cdot10^{15}\)

Correct answer:

\(\displaystyle -5.16\cdot10^{15}\)

Explanation:

\(\displaystyle \begin{align*}&\text{Performing a triple integral, the order of integration does}\\&\text{not entirely matter.}\\&\text{For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{10}^{12}\int_{-7}^{-4}\int_{-10}^{-9}(e^{(3z)}\cdot(y +\frac{ 43}{10}))dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{10}^{12}\int_{-7}^{-4}\int_{-10}^{-9}(e^{(3z)}\cdot(y +\frac{ 43}{10}))dxdydz=\int_{10}^{12}\int_{-7}^{-4}(xe^{(3z)}\cdot(y +\frac{ 43}{10}))dydz|_{-10}^{-9}\\&\int_{10}^{12}\int_{-7}^{-4}(e^{(3z)}\cdot(y + 4.3))dydz=\int_{10}^{12}(0.5e^{(3z)}\cdot(y + 4.3)^{2})dz|_{-7}^{-4}\\&\int_{10}^{12}(-3.6e^{(3z)})dz=-1.2e^{(3z)}dz|_{10}^{12}=-5.1607\cdot10^{15}\end{align*}\)

Example Question #79 : Triple Integration In Cartesian Coordinates

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{-10}^{-9}\int_{6}^{11}\int_{9}^{10}(\frac{(49cos(4y)sin(4x))}{4})dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle 0.38\)

\(\displaystyle 0.76\)

\(\displaystyle -1.91\)

\(\displaystyle 0.06\)

Correct answer:

\(\displaystyle 0.38\)

Explanation:

\(\displaystyle \begin{align*}&\text{Performing a triple integral, the order of integration does}\\&\text{not entirely matter.}\\&\text{For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{-10}^{-9}\int_{6}^{11}\int_{9}^{10}(\frac{(49cos(4y)sin(4x))}{4})dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{-10}^{-9}\int_{6}^{11}\int_{9}^{10}(\frac{(49cos(4y)sin(4x))}{4})dxdydz=\int_{-10}^{-9}\int_{6}^{11}(-3.062cos(4x)cos(4y))dydz|_{9}^{10}\\&\int_{-10}^{-9}\int_{6}^{11}(1.65cos(4y))dydz=\int_{-10}^{-9}(0.4127sin(4y))dz|_{6}^{11}\\&\int_{-10}^{-9}(0.381)dz=0.381z|_{-10}^{-9}=0.38\end{align*}\)

Example Question #80 : Triple Integration In Cartesian Coordinates

\(\displaystyle \begin{align*}&\text{Evaluate the triple integral}\int_{-8}^{-6}\int_{7}^{8}\int_{-10}^{-7}(z +\frac{ (37cos(4x)cos(y + 2))}{2})dxdydz\end{align*}\)

Possible Answers:

\(\displaystyle -231\)

\(\displaystyle 11.55\)

\(\displaystyle -46.19\)

\(\displaystyle 138.6\)

Correct answer:

\(\displaystyle -46.19\)

Explanation:

\(\displaystyle \begin{align*}&\text{Performing a triple integral, the order of integration does}\\&\text{not entirely matter.}\\&\text{For example:}\\&\int_{s}^{t} \int_{c}^{d} \int_{a}^b f(x,y,z)dxdydz=\int_{a}^{b} \int_{c}^{d} \int_{s}^t f(x,y,z)dzdydx\\&\text{Considering our integral:}\\&\int_{-8}^{-6}\int_{7}^{8}\int_{-10}^{-7}(z +\frac{ (37cos(4x)cos(y + 2))}{2})dxdydz\\&\text{The approach is simply to take it step by step:}\\&\int_{-8}^{-6}\int_{7}^{8}\int_{-10}^{-7}(z +\frac{ (37cos(4x)cos(y + 2))}{2})dxdydz=\int_{-8}^{-6}\int_{7}^{8}(xz + 4.625cos(y + 2)sin(4x))dydz|_{-10}^{-7}\\&\int_{-8}^{-6}\int_{7}^{8}(3z + 2.19cos(y + 2))dydz=\int_{-8}^{-6}(3yz + 4.386cos(0.5y + 1)sin(0.5y + 1))dz|_{7}^{8}\\&\int_{-8}^{-6}(3z - 2.1)dz=1.5z^{2} - 2.097z|_{-8}^{-6}=-46.19\end{align*}\)

Learning Tools by Varsity Tutors