Calculus 3 : Calculus 3

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #55 : Matrices

Find the matrix product of , where  and  .

Possible Answers:

Correct answer:

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that  and  

The resulting matrix product is then:

Example Question #56 : Matrices

Find the matrix product of , where  and  .

Possible Answers:

Correct answer:

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that  and 

The resulting matrix product is then:

Example Question #57 : Matrices

Find the matrix product of , where  and  .

Possible Answers:

Correct answer:

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that  and 

The resulting matrix product is then:

Example Question #58 : Matrices

Find the matrix product of , where  and  .

Possible Answers:

Correct answer:

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that  and 

The resulting matrix product is then:

Example Question #59 : Matrices

Find the matrix product of , where  and  .

Possible Answers:

Correct answer:

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that  and 

The resulting matrix product is then:

Example Question #60 : Matrices

Find the matrix product of , where  and  .

Possible Answers:

Correct answer:

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that  and 

The resulting matrix product is then:

Example Question #61 : Matrices

Find the matrix product of , where  and  .

Possible Answers:

Correct answer:

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that  and 

The resulting matrix product is then:

Example Question #62 : Matrices

Find the matrix product of , where  and  .

Possible Answers:

Correct answer:

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that  and 

The resulting matrix product is then:

In this case, A is a special type of matrix known as an identity matrix.

Example Question #63 : Matrices

Find the matrix product of , where  and  .

Possible Answers:

Correct answer:

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that  and 

The resulting matrix product is then:

Example Question #64 : Matrices

Find the matrix product of , where  and  .

Possible Answers:

Correct answer:

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that  and 

The resulting matrix product is then:

Learning Tools by Varsity Tutors