All Calculus 3 Resources
Example Questions
Example Question #44 : Dot Product
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #45 : Dot Product
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #46 : Dot Product
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #47 : Dot Product
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #48 : Dot Product
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #49 : Dot Product
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #50 : Dot Product
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #361 : Vectors And Vector Operations
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Since the dot product is zero, it can be inferred that these two vectors are perpendicular!
Example Question #362 : Vectors And Vector Operations
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #361 : Vectors And Vector Operations
Find the dot product between the two vectors and
None of the other answers
To take the dot product of two vectors, we multiply their common components, and then add.
.
Certified Tutor