All Calculus 3 Resources
Example Questions
Example Question #335 : Vectors And Vector Operations
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #25 : Dot Product
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
If there is confusion about how the above result is met, note the trigonometric identity:
Example Question #341 : Vectors And Vector Operations
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #342 : Vectors And Vector Operations
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #343 : Vectors And Vector Operations
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #344 : Vectors And Vector Operations
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #345 : Vectors And Vector Operations
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #342 : Vectors And Vector Operations
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #341 : Vectors And Vector Operations
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #342 : Vectors And Vector Operations
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Note that if you were to find the magnitude of each vector and multiply the two, you'd find the result. This is because these two vectors happen to be parallel.
Certified Tutor