All Calculus 2 Resources
Example Questions
Example Question #144 : Polar
What is the derivative of ?
In order to find the derivative of a polar equation , we must first find the derivative of with respect to as follows:
We can then swap the given values of and into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that . Swapping this into the denominator, we get:
Example Question #821 : Calculus Ii
What is the derivative of ?
In order to find the derivative of a polar equation , we must first find the derivative of with respect to as follows:
We can then swap the given values of and into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that . Swapping this into the denominator, we get:
Example Question #313 : Parametric, Polar, And Vector
What is the derivative of ?
In order to find the derivative of a polar equation , we must first find the derivative of with respect to as follows:
We can then swap the given values of and into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that . Swapping this into the denominator, we get:
Example Question #822 : Calculus Ii
What is the derivative of ?
In order to find the derivative of a polar equation , we must first find the derivative of with respect to as follows:
We can then swap the given values of and into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that . Swapping this into the numerator, we get:
Example Question #315 : Parametric, Polar, And Vector
What is the derivative of ?
In order to find the derivative of a polar equation , we must first find the derivative of with respect to as follows:
We can then swap the given values of and into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that . Swapping this into the denominator, we get:
Example Question #311 : Parametric, Polar, And Vector
What is the derivative of ?
In order to find the derivative of a polar equation , we must first find the derivative of with respect to as follows:
We can then swap the given values of and into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that . Swapping this into the denominator, we get:
Example Question #21 : Derivatives Of Polar Form
What is the derivative of ?
In order to find the derivative of a polar equation , we must first find the derivative of with respect to as follows:
We can then swap the given values of and into the equation of the derivative of an expression into polar form:
Using the trigonometric identity , we can deduce that . Swapping this into the denominator, we get:
Example Question #1 : Polar Calculations
Convert the polar coordinate equation into its rectangular equivalent, and simplify.
None of the other answers
The polar to rectangular transformation equations are . By substituting these into our given equation we get .
Adding to both sides, then we get .
Example Question #1 : Polar Calculations
Convert the following polar coordinates of the form into Cartesian coordinates of the form :
In order to convert the given polar coordinates into Cartesian coordinates, we must remember our formulas for x and y in terms of r and :
The problem tells us r and , so all we must do to convert these coordinates is plug them into the formulas above:
So we can see from our conversion that the given polar coordinates are expressed as in Cartesian coordinates.
Example Question #1 : Polar Calculations
Convert to Cartesian coordinates.
The following formulas will convert polar coordinates to Cartesian coordinates.
We are given the polar coordinate, which is in form. Plug the coordinate into the formulas and solve for x and y.
The Cartesian coordinate form is .
Certified Tutor