Calculus 2 : Parametric, Polar, and Vector

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Parametric Form

Given \(\displaystyle x=10t+7\) and \(\displaystyle y=6t-9\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

\(\displaystyle y=\frac{3}{5}(x-7)+9\)

None of the above

\(\displaystyle y=\frac{3}{5}(x+7)+9\)

\(\displaystyle y=\frac{3}{5}(x+7)-9\)

\(\displaystyle y=\frac{3}{5}(x-7)-9\)

Correct answer:

\(\displaystyle y=\frac{3}{5}(x-7)-9\)

Explanation:

We know that \(\displaystyle x=10t+7\) and \(\displaystyle y=6t-9\), so we can solve both equations for \(\displaystyle t\):

\(\displaystyle x=10t+7\rightarrow t=\frac{x-7}{10}\)

\(\displaystyle y=6t-9\rightarrow t=\frac{y+9}{6}\)

Since both equations equal \(\displaystyle t\), we can set them equal to each other and solve for \(\displaystyle y\):

\(\displaystyle \frac{y+9}{6}=\frac{x-7}{10}\)

\(\displaystyle \frac{y+9}{6}=\frac{x-7}{10}\)

\(\displaystyle y+9=6(\frac{x-7}{10})\)

\(\displaystyle y=6(\frac{x-7}{10})-9\)

\(\displaystyle y=\frac{3}{5}(x-7)-9\)

Example Question #21 : Parametric, Polar, And Vector

Given \(\displaystyle x=6t+13\) and \(\displaystyle y=10t+16\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

\(\displaystyle y=\frac{5}{3}x+\frac{17}{3}\)

\(\displaystyle y=\frac{5}{3}x-\frac{17}{3}\)

\(\displaystyle y=\frac{3}{5}x-\frac{17}{3}\)

None of the above.

\(\displaystyle y=\frac{3}{5}x+\frac{17}{3}\)

Correct answer:

\(\displaystyle y=\frac{5}{3}x-\frac{17}{3}\)

Explanation:

We know  \(\displaystyle x=6t+13\) and \(\displaystyle y=10t+16\) , so we can solve both equations for \(\displaystyle t\):

\(\displaystyle x=6t+13\rightarrow t=\frac{x-13}{6}\)

\(\displaystyle y=10t+16\rightarrow t=\frac{y-16}{10}\)

Since both equations equal \(\displaystyle t\), let's set both equations equal to each other and solve for \(\displaystyle y\):

\(\displaystyle \frac{y-16}{10}=\frac{x-13}{6}\)

\(\displaystyle y-16=10\left(\frac{x-13}{6}\right)\)

\(\displaystyle y-16=5\left(\frac{x-13}{3}\right)\)

\(\displaystyle y=5\left(\frac{x-13}{3}\right)+16\)

\(\displaystyle y=\frac{5}{3}x-\frac{65}{3}+16\)

\(\displaystyle y=\frac{5}{3}x-\frac{65}{3}+\frac{48}{3}\)

\(\displaystyle y=\frac{5}{3}x-\frac{17}{3}\)

 

Example Question #21 : Parametric, Polar, And Vector

Given \(\displaystyle x=7t-6\) and \(\displaystyle y=5t+6\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

None of the above.

\(\displaystyle y=\frac{7}{5}x+\frac{72}{7}\)

\(\displaystyle y=\frac{5}{7}x+\frac{7}{72}\)

\(\displaystyle y=\frac{7}{5}x+\frac{7}{72}\)

\(\displaystyle y=\frac{5}{7}x+\frac{72}{7}\)

Correct answer:

\(\displaystyle y=\frac{5}{7}x+\frac{72}{7}\)

Explanation:

We know  \(\displaystyle x=7t-6\) and \(\displaystyle y=5t+6\), so we can solve both equations for \(\displaystyle t\):

\(\displaystyle x=7t-6\rightarrow t=\frac{x+6}{7}\)

\(\displaystyle y=5t+6\rightarrow t=\frac{y-6}{5}\)

Since both equations equal \(\displaystyle t\), let's set both equations equal to each other and solve for \(\displaystyle y\):

\(\displaystyle \frac{y-6}{5}=\frac{x+6}{7}\)

\(\displaystyle 7({y-6})=5(x+6)\)

\(\displaystyle y-6=\frac{5}{7}(x+6)\)

\(\displaystyle y=\frac{5}{7}(x+6)+6\)

\(\displaystyle y=\frac{5}{7}x+\frac{30}{7}+6\)

\(\displaystyle y=\frac{5}{7}x+\frac{30}{7}+\frac{42}{7}\)

\(\displaystyle y=\frac{5}{7}x+\frac{72}{7}\)

 

 

 

Example Question #21 : Parametric, Polar, And Vector

Given \(\displaystyle x=\frac{2}{t}+6\) and \(\displaystyle y=\frac{3}{t}-9\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

\(\displaystyle y=\frac{3}2x+18\)

\(\displaystyle y=\frac{3}2x-18\)

\(\displaystyle y=\frac{2}3x+18\)

\(\displaystyle y=\frac{2}3x-18\)

None of the above.

Correct answer:

\(\displaystyle y=\frac{3}2x-18\)

Explanation:

We know \(\displaystyle x=\frac{2}{t}+6\) and \(\displaystyle y=\frac{3}{t}-9\), so we can solve both equations for \(\displaystyle t\):

\(\displaystyle x=\frac{2}{t}+6\rightarrow t=\frac{2}{x-6}\)

\(\displaystyle y=\frac{3}{t}-9\rightarrow t=\frac{3}{y+9}\)

Since both equations equal \(\displaystyle t\), let's set both equations equal to each other and solve for \(\displaystyle y\):

\(\displaystyle \frac{3}{y+9}=\frac{2}{x-6}\)

\(\displaystyle 3(x-6)={2}(y+9)\)

\(\displaystyle \frac{3}2{}(x-6)=y+9\)

\(\displaystyle \frac{3}2{}(x-6)-9=y\)

\(\displaystyle y=\frac{3}2x-\frac{18}{2}-9\)

\(\displaystyle y=\frac{3}2x-9-9\)

\(\displaystyle y=\frac{3}2x-18\)

 

Example Question #23 : Parametric, Polar, And Vector

Convert the following parametric function into rectangular coordinates:

\(\displaystyle x=t^2+3, y=2t\)

Possible Answers:

\(\displaystyle y= 2\sqrt{x-3}\)

\(\displaystyle y=\sqrt{x-3}\)

\(\displaystyle y=\pm 2\sqrt{x-3}\)

\(\displaystyle y=\sqrt{4x-3}\)

Correct answer:

\(\displaystyle y=\pm 2\sqrt{x-3}\)

Explanation:

To eliminate the parameter, we can solve for t in terms of y easiest:

\(\displaystyle \frac{y}{2}=t\)

Next, substitute all of the t's in the equation for x with what we defined above:

\(\displaystyle x=\frac{y^2}{4}+3\)

To finish, subtract 3, multiply by 4 and take the square root of both sides. We need plus or minus because both positive and negative squared give a positive result. 

Example Question #21 : Parametric, Polar, And Vector

If \(\displaystyle x=4t-6\) and \(\displaystyle y=12t+5\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

\(\displaystyle y=3x+23\)

\(\displaystyle y=3x-23\)

\(\displaystyle y=23x-3\)

None of the above

\(\displaystyle y=23x+3\)

Correct answer:

\(\displaystyle y=3x+23\)

Explanation:

Given \(\displaystyle x=4t-6\) and \(\displaystyle y=12t+5\), we can find the rectangular form by solving both equations for \(\displaystyle t\):

\(\displaystyle x=4t-6\rightarrow t=\frac{x+6}{4}\)

\(\displaystyle y=12t+5\rightarrow t=\frac{y-5}{12}\)

Since both equations equal \(\displaystyle t\), we can set them equal to each other:

\(\displaystyle \frac{y-5}{12}=\frac{x+6}{4}\)

\(\displaystyle {y-5}=12(\frac{x+6}{4})\)

\(\displaystyle y-5=3(x+6)\)

\(\displaystyle y=3(x+6)+5\)

\(\displaystyle y=3x+18+5\)

\(\displaystyle y=3x+23\)

 

Example Question #22 : Parametric, Polar, And Vector

If \(\displaystyle x=\frac{1}{t}+7\) and \(\displaystyle y=14t-3\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

\(\displaystyle y=\frac{14}{x-7}-3\)

\(\displaystyle y=\frac{x-7}{14}+3\)

\(\displaystyle y=\frac{14}{x-7}+3\)

None of the above 

\(\displaystyle y=\frac{x-7}{14}-3\)

Correct answer:

\(\displaystyle y=\frac{14}{x-7}-3\)

Explanation:

Given \(\displaystyle x=\frac{1}{t}+7\) and \(\displaystyle y=14t-3\), we can find the rectangular form by solving both equations for \(\displaystyle t\):

\(\displaystyle x=\frac{1}{t}+7\rightarrow t=\frac{1}{x-7}\)

 

\(\displaystyle y=14t-3\rightarrow t=\frac{y+3}{14}\)

Since both equations equal \(\displaystyle t\), we can set them equal to each other:

\(\displaystyle \frac{y+3}{14}=\frac{1}{x-7}\)

\(\displaystyle y+3=\frac{14}{x-7}\)

\(\displaystyle y=\frac{14}{x-7}-3\)

Example Question #23 : Parametric, Polar, And Vector

If \(\displaystyle x=t+4\) and \(\displaystyle y=5t+12\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

\(\displaystyle y=8x+5\)

\(\displaystyle y=5x+8\)

\(\displaystyle y=8x-5\)

\(\displaystyle y=5x-8\)

None of the above

Correct answer:

\(\displaystyle y=5x-8\)

Explanation:

Given \(\displaystyle x=t+4\) and \(\displaystyle y=5t+12\), we can find the rectangular form by solving both equations for \(\displaystyle t\):

\(\displaystyle x=t+4\rightarrow t=x-4\)

\(\displaystyle y=5t+12\rightarrow t=\frac{y-12}{5}\)

Since both equations equal \(\displaystyle t\), we can set them equal to each other:

\(\displaystyle \frac{y-12}{5}=x-4\)

\(\displaystyle y-12=5(x-4)\)

\(\displaystyle y=5(x-4)+12\)

\(\displaystyle y=5x-20+12\)

\(\displaystyle y=5x-8\)

Example Question #26 : Parametric, Polar, And Vector

Given \(\displaystyle x=5t+12\) and \(\displaystyle y=12t+5\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

None of the above

\(\displaystyle y=12\left(\frac{x+12}{5}\right)-5\)

\(\displaystyle y=12\left(\frac{x-12}{5}\right)+5\)

\(\displaystyle y=12\left(\frac{x+12}{5}\right)+5\)

\(\displaystyle y=12\left(\frac{x-12}{5}\right)-5\)

Correct answer:

\(\displaystyle y=12\left(\frac{x-12}{5}\right)+5\)

Explanation:

Since we have \(\displaystyle x=5t+12\) and \(\displaystyle y=12t+5\), let's solve each equation for \(\displaystyle t\):

\(\displaystyle x=5t+12\rightarrow t=\frac{x-12}{5}\)

\(\displaystyle y=12t+5\rightarrow t=\frac{y-5}{12}\)

Since both equations equal \(\displaystyle t\), we can set them equal to each other and solve for \(\displaystyle y\):

\(\displaystyle \frac{y-5}{12}=\frac{x-12}{5}\)

\(\displaystyle y-5=12\left(\frac{x-12}{5}\right)\)

\(\displaystyle y=12\left(\frac{x-12}{5}\right)+5\)

Example Question #24 : Parametric, Polar, And Vector

Given \(\displaystyle x=3t-11\) and \(\displaystyle y=6t-2\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

\(\displaystyle y=2x-20\)

\(\displaystyle y=20x-2\)

\(\displaystyle y=2x+20\)

None of the above

\(\displaystyle y=20x+2\)

Correct answer:

\(\displaystyle y=2x+20\)

Explanation:

Since we have  \(\displaystyle x=3t-11\) and \(\displaystyle y=6t-2\), let's solve each equation for \(\displaystyle t\):

\(\displaystyle x=3t-11\rightarrow t=\frac{x+11}{3}\)

\(\displaystyle y=6t-2\rightarrow t=\frac{y+2}{6}\)

Since both equations equal \(\displaystyle t\), we can set them equal to each other and solve for \(\displaystyle y\):

\(\displaystyle \frac{y+2}{6}=\frac{x+11}{3}\)

\(\displaystyle y+2=6\left(\frac{x+11}{3}\right)\)

\(\displaystyle y+2=2(x+11)\)

\(\displaystyle y+2=2x+22\)

\(\displaystyle y=2x+20\)

Learning Tools by Varsity Tutors