Calculus 2 : Parametric Form

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Parametric, Polar, And Vector

\(\displaystyle \small x=3t+4\) and \(\displaystyle \small y=1/t\). What is \(\displaystyle \small y\) in terms of \(\displaystyle \small x\) (rectangular form)?

Possible Answers:

\(\displaystyle \small y=(x-3)/4\)

\(\displaystyle \small y=(x-4)/3\)

\(\displaystyle \small y=4/(x-3)\)

\(\displaystyle \small y=3/(x-4)\)

Correct answer:

\(\displaystyle \small y=3/(x-4)\)

Explanation:

In order to solve this, we must isolate \(\displaystyle \small t\) in both equations. 

\(\displaystyle \small \small x=3t+4\rightarrow t=(x-4)/3\) and 

\(\displaystyle \small y=1/t\rightarrow t=1/y\).

Now we can set the right side of those two equations equal to each other since they both equal \(\displaystyle \small t\).

 \(\displaystyle \small (x-4)/3=1/y\).

By multiplying both sides by \(\displaystyle \small 3y/(x-4)\), we get \(\displaystyle \small y=3/(x-4)\), which is our equation in rectangular form.

Example Question #2 : Parametric Form

If \(\displaystyle x=3+t\) and \(\displaystyle y=4t+7\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

\(\displaystyle y=4x-12\)

\(\displaystyle y=4x-5\)

\(\displaystyle y=4x-7\)

\(\displaystyle y=4x-2\)

\(\displaystyle y=4x-3\)

Correct answer:

\(\displaystyle y=4x-5\)

Explanation:

Given \(\displaystyle x=3+t\) and  \(\displaystyle y=4t+7\), we can find \(\displaystyle y\) in terms of \(\displaystyle x\) by isolating \(\displaystyle t\) in both equations:

 

\(\displaystyle x=3+t\rightarrow t=x-3\)

\(\displaystyle y=4t+7\rightarrow t=\frac{y-7}{4}\)

Since both of these transformations equal \(\displaystyle t\), we can set them equal to each other:

\(\displaystyle \frac{y-7}{4}=x-3\)

\(\displaystyle y-7=4(x-3)\)

\(\displaystyle y-7=4x-12\)

\(\displaystyle y=4x-5\)

Example Question #1 : Parametric, Polar, And Vector

Given \(\displaystyle x=7t-5\) and \(\displaystyle y=2t+9\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)? 

Possible Answers:

\(\displaystyle y=\frac{5}{7}({x+2})+9\)

\(\displaystyle y=\frac{7}{2}({x+5})+9\)

\(\displaystyle y=\frac{2}{7}({x+5})+9\)

None of the above

\(\displaystyle y=\frac{9}{7}({x+5})+2\)

Correct answer:

\(\displaystyle y=\frac{2}{7}({x+5})+9\)

Explanation:

In order to find \(\displaystyle y\) with respect to \(\displaystyle x\), we first isolate \(\displaystyle t\) in both equations:\(\displaystyle x=7t-5\rightarrow t=\frac{x+5}{7}\)

\(\displaystyle y=2t+9\rightarrow t=\frac{y-9}{2}\)

Since both equations equal \(\displaystyle t\), we can then set them equal to each other and solve for \(\displaystyle y\):

\(\displaystyle \frac{y-9}{2}=\frac{x+5}{7}\)

\(\displaystyle {y-9}=2(\frac{x+5}{7})\)

\(\displaystyle y=\frac{2}{7}({x+5})+9\)

Example Question #1 : Parametric

Given \(\displaystyle x=4t+9\) and \(\displaystyle y=-t+2\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)? 

Possible Answers:

\(\displaystyle y=\frac{4-x}{17}\)

\(\displaystyle y=\frac{x-17}{4}\)

\(\displaystyle y=\frac{x-4}{17}\)

\(\displaystyle y=\frac{17-x}{4}\)

None of the above

Correct answer:

\(\displaystyle y=\frac{17-x}{4}\)

Explanation:

In order to find \(\displaystyle y\) with respect to \(\displaystyle x\), we first isolate \(\displaystyle t\) in both equations:\(\displaystyle x=4t+9\rightarrow t=\frac{x-9}{4}\)

\(\displaystyle y=-t+2\rightarrow t=2-y\)

Since both equations equal \(\displaystyle t\), we can then set them equal to each other and solve for \(\displaystyle y\):

\(\displaystyle 2-y=\frac{x-9}{4}\)

\(\displaystyle y=2-\frac{x-9}{4}\)

\(\displaystyle y=\frac{8}{4}-\frac{x-9}{4}\)

\(\displaystyle y=\frac{8-(x-9)}{4}\)

\(\displaystyle y=\frac{8-(x-9)}{4}\)

\(\displaystyle y=\frac{8-x+9}{4}\)

\(\displaystyle y=\frac{17-x}{4}\)

Example Question #1 : Parametric Form

Given \(\displaystyle x=10t-3\) and \(\displaystyle y=7t+8\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)? 

Possible Answers:

\(\displaystyle y=\frac{3}{10}({x+7)+8\)

None of the above

\(\displaystyle y=\frac{8}{10}({x+3)+7\)

\(\displaystyle y=\frac{7}{10}({x+3)+8\)

\(\displaystyle y=\frac{8}{10}({x+7)+3\)

Correct answer:

\(\displaystyle y=\frac{7}{10}({x+3)+8\)

Explanation:

In order to find \(\displaystyle y\) with respect to \(\displaystyle x\), we first isolate \(\displaystyle t\) in both equations:

\(\displaystyle x=10t-3\rightarrow t=\frac{x+3}{10}\)

\(\displaystyle y=7t+8\rightarrow t=\frac{y-8}{7}\)

Since both equations equal \(\displaystyle t\), we can then set them equal to each other and solve for \(\displaystyle y\):

\(\displaystyle \frac{y-8}{7}=\frac{x+3}{10}\)

\(\displaystyle y-8=7(\frac{x+3}{10})\)

\(\displaystyle y=\frac{7}{10}({x+3)+8\)

Example Question #1 : Parametric Form

If \(\displaystyle x=6t+5\) and \(\displaystyle y=5t+6\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

\(\displaystyle y=\frac{5}{6}(x-5)+6\)

\(\displaystyle y=\frac{5}{6}(x-6)+5\)

\(\displaystyle y=\frac{6}{5}(x-5)+6\)

\(\displaystyle y=\frac{6}{5}(x-6)+5\)

None of the above

Correct answer:

\(\displaystyle y=\frac{5}{6}(x-5)+6\)

Explanation:

Given \(\displaystyle x=6t+5\) and  \(\displaystyle y=5t+6\), we can find \(\displaystyle y\) in terms of \(\displaystyle x\) by isolating \(\displaystyle t\) in both equations:

\(\displaystyle x=6t+5\rightarrow t=\frac{x-5}{6}\)

\(\displaystyle y=5t+6\rightarrow t=\frac{y-6}{5}\)

Since both of these transformations equal \(\displaystyle t\), we can set them equal to each other:

\(\displaystyle \frac{y-6}{5}=\frac{x-5}{6}\)

\(\displaystyle {y-6}=5\left(\frac{x-5}{6}\right)\)

\(\displaystyle y=\frac{5}{6}(x-5)+6\)

 

Example Question #3 : Parametric Form

If \(\displaystyle x=4t-3\) and \(\displaystyle y=2t+7\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

\(\displaystyle y=\frac{3}{x+2}+7\)

\(\displaystyle y=\frac{2}{x+3}+7\)

\(\displaystyle y=\frac{x+3}{2}+7\)

\(\displaystyle y=\frac{x+7}{3}+2\)

\(\displaystyle y=\frac{x+2}{7}+3\)

Correct answer:

\(\displaystyle y=\frac{x+3}{2}+7\)

Explanation:

Given \(\displaystyle x=4t-3\) and  \(\displaystyle y=2t+7\), we can find \(\displaystyle y\) in terms of \(\displaystyle x\) by isolating \(\displaystyle t\) in both equations:

\(\displaystyle x=4t-3\rightarrow t=\frac{x+3}{4}\)

\(\displaystyle y=2t+7\rightarrow t=\frac{y-7}{2}\)

Since both of these transformations equal \(\displaystyle t\), we can set them equal to each other:

\(\displaystyle \frac{y-7}{2}=\frac{x+3}{4}\)

\(\displaystyle y-7=2\left(\frac{x+3}{4}\right)\)

\(\displaystyle y-7=\frac{x+3}{2}\)

\(\displaystyle y=\frac{x+3}{2}+7\)

Example Question #4 : Parametric Form

Given \(\displaystyle x=9t-2\) and \(\displaystyle y=5t+1\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

\(\displaystyle y=\frac{1}{9}({x+2}})+5\)

\(\displaystyle y=\frac{2}{9}({x+5}})+1\)

\(\displaystyle y=\frac{5}{9}({x+2}})+1\)

\(\displaystyle y=\frac{9}{2}({x+5}})+1\)

\(\displaystyle y=\frac{9}{5}({x+2}})+1\)

Correct answer:

\(\displaystyle y=\frac{5}{9}({x+2}})+1\)

Explanation:

Knowing that \(\displaystyle x=9t-2\) and \(\displaystyle y=5t+1\), we can isolate \(\displaystyle t\) in both equations as follows:

\(\displaystyle x=9t-2\rightarrow t=\frac{x+2}{9}\)

\(\displaystyle y=5t+1\rightarrow t=\frac{y-1}{5}\)

Since both of these equations equal \(\displaystyle t\), we can set them equal to each other:

\(\displaystyle \frac{y-1}{5}=\frac{x+2}{9}\)

\(\displaystyle {y-1}=5(\frac{x+2}{9})\)

\(\displaystyle y=\frac{5}{9}({x+2}})+1\)

 

Example Question #5 : Parametric Form

Given \(\displaystyle x=t-16\) and \(\displaystyle y=8t+3\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

\(\displaystyle y=8x+128\)

\(\displaystyle y=8x+15\)

\(\displaystyle y=8x+131\)

\(\displaystyle y=8x+13\)

\(\displaystyle y=8x+113\)

Correct answer:

\(\displaystyle y=8x+131\)

Explanation:

Knowing that \(\displaystyle x=t-16\) and \(\displaystyle y=8t+3\),  we can isolate \(\displaystyle t\) in both equations as follows:

\(\displaystyle x=t-16\rightarrow t=x+16\)

\(\displaystyle y=8t+3\rightarrow t=\frac{y-3}{8}\)

Since both of these equations equal \(\displaystyle t\), we can set them equal to each other:

\(\displaystyle \frac{y-3}{8}=x+16\)

\(\displaystyle y-3=8(x+16)\)

\(\displaystyle y-3=8x+128\)

\(\displaystyle y=8x+131\)

 

Example Question #6 : Parametric Form

Given \(\displaystyle x=14-t\) and \(\displaystyle y=7t+6\), what is \(\displaystyle y\) in terms of \(\displaystyle x\) (rectangular form)?

Possible Answers:

None of the above

\(\displaystyle y=7x-104\)

\(\displaystyle y=7-104x\)

\(\displaystyle y=104x-7\)

\(\displaystyle y=104-7x\)

Correct answer:

\(\displaystyle y=104-7x\)

Explanation:

Since we know  \(\displaystyle x=14-t\) and \(\displaystyle y=7t+6\),  we can solve each equation for \(\displaystyle t\):

\(\displaystyle x=14-t\rightarrow t=14-x\)

\(\displaystyle y=7t+6\rightarrow t=\frac{y-6}{7}\)

Since both equations equal \(\displaystyle t\), we can set them equal to each other and solve for \(\displaystyle y\):

\(\displaystyle \frac{y-6}{7}=14-x\)

\(\displaystyle y-6=7(14-x)\)

\(\displaystyle y-6=98-7x\)

\(\displaystyle y=104-7x\)

Learning Tools by Varsity Tutors