All Calculus 2 Resources
Example Questions
Example Question #71 : Finding Limits And One Sided Limits
Given the above graph of , what is ?
Examining the graph above, we need to look at three things:
1) What is the limit of the function as approaches zero from the left?
2) What is the limit of the function as approaches zero from the right?
3) What is the function value as and is it the same as the result from statement one and two?
Thus, we can observe that as approaches from the left and right.
Example Question #71 : Finding Limits And One Sided Limits
Given the above graph of , what is ?
Does Not Exist
Does Not Exist
Examining the graph above, we need to look at three things:
1) What is the limit of the function as approaches zero from the left?
2) What is the limit of the function as approaches zero from the right?
3) What is the function value as and is it the same as the result from statement one and two?
Therefore, we can observe that does not exist, as approaches two different limits: from the left and from the right.
Example Question #72 : Finding Limits And One Sided Limits
Given the above graph of , what is ?
Examining the graph, we want to find where the graph tends to as it approaches zero from the left hand side. We can see that there appears to be a vertical asymptote at zero. As the x values approach zero from the left, the function values of the graph tend towards positive infinity.
Thus, we can observe that as approaches from the left.
Example Question #73 : Finding Limits And One Sided Limits
Given the above graph of , what is ?
Examining the graph above, we need to look at three things:
1) What is the limit of the function as approaches zero from the left?
2) What is the limit of the function as approaches zero from the right?
3) What is the function value as and is it the same as the result from statement one and two?
Therefore, we can observe that as approaches from the left and from the right.
Example Question #74 : Finding Limits And One Sided Limits
Given the above graph of , what is ?
Does Not Exist
Does Not Exist
Examining the graph above, we need to look at three things:
1) What is the limit of the function as approaches zero from the left?
2) What is the limit of the function as approaches zero from the right?
3) What is the function value as and is it the same as the result from statement one and two?
Therefore, we can observe that does not exist, as approaches two different limits: from the left and from the right.
Example Question #75 : Finding Limits And One Sided Limits
Given the above graph of , what is ?
Examining the graph, we want to find where the graph tends to as it approaches zero from the left hand side. We can see that there appears to be a vertical asymptote at zero. As the x values approach zero from the left, the function values of the graph tend towards negative infinity.
Thus, we can observe that as approaches from the left.
Example Question #76 : Finding Limits And One Sided Limits
Given the above graph of , what is ?
Examining the graph above, we need to look at three things:
1) What is the limit of the function as approaches zero from the left?
2) What is the limit of the function as approaches zero from the right?
Therefore, we can observe that as approaches from the left and from the right.
Example Question #71 : Finding Limits And One Sided Limits
Given the above graph of , what is ?
Examining the graph, we want to find where the graph tends to as it approaches zero from the right hand side. We can see that there appears to be a vertical asymptote at zero. As the x values approach zero from the right, the function values of the graph tend towards negative infinity.
Thus, we can observe that as approaches from the right.
Example Question #121 : Calculus Ii
Given the above graph of , what is ?
Examining the graph above, we need to look at three things:
1) What is the limit of the function as approaches zero from the left?
2) What is the limit of the function as approaches zero from the right?
3) What is the function value as and is it the same as the result from statement one and two?
Using these rules we can observe that as approaches from the left and from the right.
Example Question #122 : Calculus Ii
Given the above graph of , what is ?
Does Not Exist
Does Not Exist
Examining the graph above, we need to look at three things:
1) What is the limit of the function as approaches zero from the left?
2) What is the limit of the function as approaches zero from the right?
3) What is the function value as and is it the same as the result from statement one and two?
Using these rules, we can observe that does not exist, as approaches two different limits: from the left and from the right.
Certified Tutor