Calculus 2 : Finding Limits and One-Sided Limits

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #94 : Limits

Evaluate:

Possible Answers:

The limit does not exist.

Correct answer:

Explanation:

Before we evaluate, lets factor the numerator.

Now lets simplify the expression to

.

Now we can evaluate:

 

 

Example Question #95 : Limits

Evaluate:

Possible Answers:

The limit does not exist.

Correct answer:

Explanation:

If we evaluate:

We get

So we can use L'Hopital's Rule,

L'Hopital's Rule is as follows.

If  

 

or

where a is a real number, then the following is true.

Now lets apply this to our problem.

Example Question #51 : Finding Limits And One Sided Limits

Evaluate:

Possible Answers:

The limit does not exist.

Correct answer:

Explanation:

If we evaluate:

We get

So we can use L'Hopital's Rule,

L'Hopital's Rule is as follows.

If  

 

or

where a is a real number, then the following is true.

Now lets apply this to our problem.

Now we can evaluate the expression to get.

Example Question #51 : Finding Limits And One Sided Limits

Evaluate:

 

Possible Answers:

The limit does not exist.

Correct answer:

Explanation:

If we evaluate:

We get

So we can use L'Hopital's Rule,

L'Hopital's Rule is as follows.

If  

 

or

where a is a real number, then the following is true.

.

Now lets apply this to our problem.

If we plug in 0 we get,

Example Question #51 : Finding Limits And One Sided Limits

Evaluate the following limit:

Possible Answers:

Correct answer:

Explanation:

To evaluate the limit, we first must determine if we are approaching  from the right or left. We are approaching from the left (numbers barely less than 3), and our piecewise function indicates that for numbers less than or equal to three, our function is .

This function as it approaches zero reaches .

Example Question #52 : Finding Limits And One Sided Limits

Limit a 7.17

Given the above graph of , what is ?

Possible Answers:

Correct answer:

Explanation:

Examining the graph, we want to find where the graph tends to as it approaches zero from the right hand side. We can see that there appears to be a vertical asymptote at zero. As the x values approach zero from the right the function values of the graph tend towards negative infinity.

Therefore, we can observe that  as  approaches   from the right.

Example Question #100 : Limits

Limit b 7.17

Given the above graph of , what is ?

Possible Answers:

Correct answer:

Explanation:

Examining the graph above, we need to look at three things:

1) What is the limit of the function as  approaches zero from the left?

2) What is the limit of the function as  approaches zero from the right?

3) What is the function value as  and is it the same as the result from statement one and two?

Therefore, we can observe that  as  approaches   from either side.

Example Question #101 : Calculus Ii

Limit c 7.17

Given the above graph of , what is ?

Possible Answers:

Does not exist

Correct answer:

Does not exist

Explanation:

Examining the graph above, we need to look at three things:

1) What is the limit of the function as  approaches three from the left?

2) What is the limit of the function as  approaches three from the right?

3) What is the function value as  and is it the same as the result from statement one and two?

Therefore, we can observe that   does not exist, as  approaches two different limits as  approaches :   from the left and  from the right.

Example Question #102 : Calculus Ii

Evalute the following limit.

Possible Answers:

The limit does not exist.

Correct answer:

Explanation:

Note that if you plug in  to the original limit, you get  as your answer. This shows that you need to use L'Hopital's rule and take the derivative of both the top and the bottom of the limit and then attempt to retry finding the limit.

The derivative of the top side becomes  and the derivative of the bottom side becomes  (the 1's go away because they are constants) and so you can rewrite the problem as so: 

.

Note that 1 raised to any power is just 1, so the limit becomes 

 which is

Example Question #103 : Calculus Ii

Screen shot 2015 07 20 at 10.06.05 am

Given the above graph of , what is ?

Possible Answers:

Correct answer:

Explanation:

Examining the graph above, we need to look at three things:

1) What is the limit of the function as  approaches two from the left?

2) What is the limit of the function as  approaches two from the right?

3) What is the function value as  and is it the same as the result from statement one and two?

Therefore, we can observe that  as  approaches  from the left and from the right.

Learning Tools by Varsity Tutors