Calculus 2 : Area Under a Curve

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #61 : Integral Applications

Find the area under the curve  between .

Possible Answers:

Correct answer:

Explanation:

We can define the area underneath a curve provided by a function as the definite integral of the function over a given space. Thus, given , then the area over  is 

Using the Power Rule for Integrals

for all ,

we can determine that:

 

Example Question #11 : Area Under A Curve

Find the area under the curve  between .

Possible Answers:

None of the above

Correct answer:

Explanation:

We can define the area underneath a curve provided by a function as the definite integral of the function over a given space. Thus, given , then the area over  is 

Using the Power Rule for Integrals

 for all ,

we can determine that:

 

 

Example Question #71 : Integral Applications

Find the area under the curve  between .

Possible Answers:

Correct answer:

Explanation:

We can define the area underneath a curve provided by a function as the definite integral of the function over a given space. Thus, given , then the area over  is 

Using the Power Rule for Integrals

 for all ,

we can determine that:

Example Question #72 : Integral Applications

Find the area under the curve  between .

Possible Answers:

None of the above

Correct answer:

Explanation:

We can define the area underneath a curve provided by a function as the definite integral of the function over a given space.

Thus, given , then the area over  is .

Using the Power Rule for Integrals

for all ,

we can determine that:

 

 

 

Example Question #71 : Integral Applications

Find the area under the curve for  from  to 

Possible Answers:

Correct answer:

Explanation:

Finding the area of a region is the same as integrating over the range of the function and it can be rewritten into the following:

Solution:

Note:

Example Question #71 : Integral Applications

Find the area under the curve for  from  to , rounded to the nearest integer.

Possible Answers:

Correct answer:

Explanation:

Finding the area of a region is the same as integrating over the range of the function and it can be rewritten into the following:

Solution:

 

 after rounding

Example Question #12 : Area Under A Curve

Find the area under the curve for  from  to 

Possible Answers:

Correct answer:

Explanation:

Finding the area of a region is the same as integrating over the range of the function and it can be rewritten into the following:

Solution:

 

 

Example Question #76 : Integral Applications

Find the area under the curve for  from  to , rounded to the nearest integer.

Possible Answers:

Correct answer:

Explanation:

Finding the area of a region is the same as integrating over the range of the function and it can be rewritten into the following:

Solution:

 

 after rounding

Example Question #11 : Area Under A Curve

Find the area under the curve for  from  to , rounded to the nearest integer.

Possible Answers:

Correct answer:

Explanation:

Finding the area of a region is the same as integrating over the range of the function and it can be rewritten into the following:

Solution:

 

 after rounding

Example Question #78 : Integral Applications

Find the area under the curve for  from  to 

Possible Answers:

Correct answer:

Explanation:

Finding the area of a region is the same as integrating over the range of the function and it can be rewritten into the following:

Solution:

This function is negative for the entire region, so multiply the integral by -1 to drop the absolute value signs.

Learning Tools by Varsity Tutors