Calculus 1 : Functions

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #141 : How To Find Midpoint Riemann Sums

Utilize the method of midpoint Riemann sums to approximate the average of  over the interval  using four midpoints.

Possible Answers:

Correct answer:

Explanation:

To find the average of a function over a given interval of values , the most precise method is to use an integral as follows:

Now for functions that are difficult or impossible to integrate,a Riemann sum can be used to approximate the value. A Riemann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length equal to the subinterval length  , and variable heights , which depend on the function value at a given point  .

Now note that when using the method of Riemann sums to find an average value of a function, the expression changes:

We're asked to approximate the average of  over the interval 

The subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #142 : How To Find Midpoint Riemann Sums

Utilize the method of midpoint Riemann sums to approximate the average of  over the interval  using three midpoints.

Possible Answers:

Correct answer:

Explanation:

To find the average of a function over a given interval of values , the most precise method is to use an integral as follows:

Now for functions that are difficult or impossible to integrate,a Riemann sum can be used to approximate the value. A Riemann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length equal to the subinterval length  , and variable heights , which depend on the function value at a given point  .

Now note that when using the method of Riemann sums to find an average value of a function, the expression changes:

We're asked to approximate the average of  over the interval 

The subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #141 : How To Find Midpoint Riemann Sums

Utilize the method of midpoint Riemann sums to approximate the average of  over the interval  using three midpoints.

Possible Answers:

Correct answer:

Explanation:

To find the average of a function over a given interval of values , the most precise method is to use an integral as follows:

Now for functions that are difficult or impossible to integrate,a Riemann sum can be used to approximate the value. A Riemann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length equal to the subinterval length  , and variable heights , which depend on the function value at a given point  .

Now note that when using the method of Riemann sums to find an average value of a function, the expression changes:

We're asked to approximate the average of   over the interval 

The subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #142 : Functions

Utilize the method of midpoint Riemann sums to approximate the average of  over the interval  using three midpoints.

Possible Answers:

Correct answer:

Explanation:

To find the average of a function over a given interval of values , the most precise method is to use an integral as follows:

Now for functions that are difficult or impossible to integrate,a Riemann sum can be used to approximate the value. A Riemann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length equal to the subinterval length  , and variable heights , which depend on the function value at a given point  .

Now note that when using the method of Riemann sums to find an average value of a function, the expression changes:

We're asked to approximate the average of   over the interval 

The subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #142 : How To Find Midpoint Riemann Sums

Utilize the method of midpoint Riemann sums to approximate the average of  over the interval  using three midpoints.

Possible Answers:

Correct answer:

Explanation:

To find the average of a function over a given interval of values , the most precise method is to use an integral as follows:

Now for functions that are difficult or impossible to integrate,a Riemann sum can be used to approximate the value. A Riemann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length equal to the subinterval length  , and variable heights , which depend on the function value at a given point  .

Now note that when using the method of Riemann sums to find an average value of a function, the expression changes:

We're asked to approximate the average of   over the interval 

The subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #143 : How To Find Midpoint Riemann Sums

Utilize the method of midpoint Riemann sums to approximate the average of  over the interval  using three midpoints.

Possible Answers:

Correct answer:

Explanation:

To find the average of a function over a given interval of values , the most precise method is to use an integral as follows:

Now for functions that are difficult or impossible to integrate,a Riemann sum can be used to approximate the value. A Riemann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length equal to the subinterval length  , and variable heights , which depend on the function value at a given point  .

Now note that when using the method of Riemann sums to find an average value of a function, the expression changes:

We're asked to approximate the average of   over the interval 

The subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #147 : How To Find Midpoint Riemann Sums

Utilize the method of midpoint Riemann sums to approximate the average of  over the interval  using three midpoints.

Possible Answers:

Correct answer:

Explanation:

To find the average of a function over a given interval of values , the most precise method is to use an integral as follows:

Now for functions that are difficult or impossible to integrate,a Riemann sum can be used to approximate the value. A Riemann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length equal to the subinterval length  , and variable heights , which depend on the function value at a given point  .

Now note that when using the method of Riemann sums to find an average value of a function, the expression changes:

We're asked to approximatethe average of   over the interval 

The subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #144 : How To Find Midpoint Riemann Sums

Utilize the method of midpoint Riemann sums to approximate the average of  over the interval  using three midpoints.

Possible Answers:

Correct answer:

Explanation:

To find the average of a function over a given interval of values , the most precise method is to use an integral as follows:

Now for functions that are difficult or impossible to integrate,a Riemann sum can be used to approximate the value. A Riemann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length equal to the subinterval length  , and variable heights , which depend on the function value at a given point  .

Now note that when using the method of Riemann sums to find an average value of a function, the expression changes:

We're asked to approximate the average of   over the interval 

The subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #149 : How To Find Midpoint Riemann Sums

Utilize the method of midpoint Riemann sums to approximate the average of  over the interval  using three midpoints.

Possible Answers:

Correct answer:

Explanation:

To find the average of a function over a given interval of values , the most precise method is to use an integral as follows:

Now for functions that are difficult or impossible to integrate,a Riemann sum can be used to approximate the value. A Riemann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length equal to the subinterval length  , and variable heights , which depend on the function value at a given point  .

Now note that when using the method of Riemann sums to find an average value of a function, the expression changes:

We're asked to approximate the average of  over the interval 

The subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #145 : How To Find Midpoint Riemann Sums

Utilize the method of midpoint Riemann sums to approximate the average of  over the interval  using three midpoints.

Possible Answers:

Correct answer:

Explanation:

To find the average of a function over a given interval of values , the most precise method is to use an integral as follows:

Now for functions that are difficult or impossible to integrate,a Riemann sum can be used to approximate the value. A Riemann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length equal to the subinterval length  , and variable heights , which depend on the function value at a given point  .

Now note that when using the method of Riemann sums to find an average value of a function, the expression changes:

We're asked to approximate the average of  over the interval 

The subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Learning Tools by Varsity Tutors