Calculus 1 : Calculus

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #821 : Other Differential Functions

Find the derivative.

\displaystyle 3x^4-2x^2+3x

Possible Answers:

\displaystyle 12x^3-4x

\displaystyle 12x^3+4x-3

\displaystyle 12x^3-4x+3

\displaystyle 12x^3+4x

Correct answer:

\displaystyle 12x^3-4x+3

Explanation:

Use the power rule to find the derivative.

\displaystyle \frac{d}{dx}3x^4=12x^3

\displaystyle \frac{d}{dx}-2x^2=-4x

\displaystyle \frac{d}{dx}3x=3

Thus, the derivative is \displaystyle 12x^3-4x+3.

 

Example Question #2041 : Calculus

Find the derivative.

\displaystyle \frac{8}{x^3}

Possible Answers:

\displaystyle \frac{24}{x^4}

\displaystyle \frac{-24}{x^6}

\displaystyle \frac{-24}{x^4}

\displaystyle \frac{24}{x^6}

Correct answer:

\displaystyle \frac{-24}{x^4}

Explanation:

Use the quotient rule to find the derivative.

\displaystyle \frac{d}{dx}\frac{8}{x^3}=\frac{x^3(0)-8(3x^2)}{x^6}=\frac{-24x^2}{x^6}=\frac{-24}{x^4}

Example Question #2042 : Calculus

Find the derivative.

\displaystyle \frac{x^2}{7}

Possible Answers:

\displaystyle \frac{2x}{7}

\displaystyle \frac{x}{7}

\displaystyle \frac{2x^2}{7}

\displaystyle \frac{1}{7}

Correct answer:

\displaystyle \frac{2x}{7}

Explanation:

Use the quotient rule to find the answer.

\displaystyle \frac{7(2x)-x^2(0)}{49}

Simplify.

\displaystyle \frac{14x}{49}=\frac{2x}{7}

Example Question #2043 : Calculus

Find the derivative.

\displaystyle 2x^2\sin (x)

Possible Answers:

\displaystyle 2x^2\cos (x)-4x\sin (x)

\displaystyle 2x^2\cos (x)+4x\sin (x)

\displaystyle 2x^2\cos (x)+x\sin (x)

\displaystyle 2x^2\cos (x)-x\sin (x)

Correct answer:

\displaystyle 2x^2\cos (x)+4x\sin (x)

Explanation:

Use the quotient rule to find the derivative.

\displaystyle 2x^2\cos (x)+4x\sin (x)

Example Question #2044 : Calculus

Find the derivative.

\displaystyle -3x^2+5

Possible Answers:

\displaystyle 6x

\displaystyle -6

\displaystyle 6

\displaystyle -6x

Correct answer:

\displaystyle -6x

Explanation:

Use the power rule to find the derivative.

\displaystyle \frac{d}{dx}-3x^2=-6

Recall that the derivative of a constant is zero.

Thus, the derivative is -6.

Example Question #2046 : Calculus

Find \displaystyle \frac{\mathrm{d} y}{\mathrm{d} x} using implicit differentiation:

\displaystyle x^2+5e^xy=10y^3

Possible Answers:

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2x+5e^x}{30y^2-5e^x}

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2x+5e^xy}{30y^2-5e^xy}

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2x+5e^xy}{30y^2+5e^x}

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2x+5e^xy}{30y^2-5e^x}

Correct answer:

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2x+5e^xy}{30y^2-5e^x}

Explanation:

To solve for \displaystyle \frac{\mathrm{dy} }{\mathrm{d} x}, we differentiate using normal rules, but when taking the derivative of y with respect to x, we must add the term we are solving for, \displaystyle \frac{\mathrm{d} y}{\mathrm{d} x}.

Taking the derivative, we get

\displaystyle 2x+5e^xy+5e^x\frac{\mathrm{dy} }{\mathrm{d} x}=30y^2\frac{\mathrm{dy} }{\mathrm{d} x}

using the following rules:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1} , \displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^x=e^x\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} f(x)g(x)=f'(x)g(x)+f(x)g'(x)

Finally, we solve for \displaystyle \frac{\mathrm{d} y}{\mathrm{d} x}:

\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{2x+5e^xy}{30y^2-5e^x}.

 

Example Question #831 : How To Find Differential Functions

Determine if the function is differentiable for all \displaystyle x :

\displaystyle f(t)=\begin{Bmatrix} \frac{1}{x}, x< -1\\ ln(-x-1+e), x\geq -1 \end{Bmatrix} 

 

Possible Answers:

The function is differentiable but not continuous for all \displaystyle x

The function is differentiable for all \displaystyle x

The answer cannot be determined without analysis in the complex plane

The function is not differentiable for all \displaystyle x

Correct answer:

The function is not differentiable for all \displaystyle x

Explanation:

When looking at differentiability of piecewise functions over all \displaystyle x, first consider if the two functions are continuous and differentiable for all x. 

\displaystyle \frac{1}{x} is discontinuous at \displaystyle x=0, but that's okay \displaystyle \frac{1}{x} is restricted for \displaystyle x< -1. However \displaystyle ln(-x) does not exist for \displaystyle x\geq0. Since this is the case, we can say that this piecewise function is not differentiable for all \displaystyle x.

Example Question #1015 : Functions

What is the second derivative of \displaystyle f(x)=6x^3-2x^2+9 ?

Possible Answers:

\displaystyle f{}''(x)=-36x-4

\displaystyle f{}''(x)=36x+4

\displaystyle f{}''(x)=36x-4

\displaystyle f{}''(x)=4x

\displaystyle f{}''(x)=36x

Correct answer:

\displaystyle f{}''(x)=36x-4

Explanation:

To find the second derivative, you must first find the first derivative. When taking the derivative, multiply the exponent by the coefficient in front of the x term and then subtract one from the exponent. Therefore, the first derivative is: \displaystyle 18x^2-4x. Then, take the derivative again to get the second derivative: \displaystyle f{}''(x)=36x-4.

Example Question #831 : How To Find Differential Functions

What is the derivative of \displaystyle f(x)=(4x^2-1)(9)

Possible Answers:

\displaystyle f{}'(x)=72x+1

\displaystyle f{}'(x)=72x

\displaystyle f{}'(x)=36x

\displaystyle f{}'(x)=-72x

\displaystyle f{}'(x)=2x

Correct answer:

\displaystyle f{}'(x)=72x

Explanation:

First, distribute the 9 to get \displaystyle 36x^2-9. Then, take the derivative, remembering to multiply the exponent by the coefficient in front of the x and then subtracting one from the exponent to get an answer of \displaystyle f{}'(x)=72x.

Example Question #832 : Other Differential Functions

Find the first derivative of the following function:

\displaystyle f(x)=3xe^{x}+12\cos(x)

Possible Answers:

\displaystyle 3+3xe^x-12\sin(x)

\displaystyle 3e^x+3xe^x+12\sin(x)

\displaystyle 3e^x+3xe^x-12\sin(x)

\displaystyle 3e^x+3xe^x-\sin(x)

\displaystyle 3e^x+3x^2e^x-12\sin(x)

Correct answer:

\displaystyle 3e^x+3xe^x-12\sin(x)

Explanation:

The derivative of the function is equal to

\displaystyle f'(x)=3e^x+3xe^x-12\sin(x)

and was found using the following rules:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} f(x)g(x)=f'(x)g(x)+f(x)g'(x), \displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}, \displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^x=e^x, \displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \cos(x)=-\sin(x)

Learning Tools by Varsity Tutors