All Calculus 1 Resources
Example Questions
Example Question #594 : Other Differential Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
Trigonometric derivative:
Using a calculator, there are multiple solutions that satisfy the equation. Only one, however satisfies the mean value theorem by falling within the interval , and that is
Example Question #595 : Other Differential Functions
Let on the interval . Which of the following values fails to satisfy the mean value theorem for this function and interval?
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
Trigonometric derivative:
To satisfy the mean value theorem, at least one solution must fall within the interval . Using a calculator, we find four which do:
Example Question #596 : Other Differential Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
Derivative of an exponential:
Using a calculator, we can find a solution , which fits within our interval , satisfying the mean value theorem.
Example Question #597 : Other Differential Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
Derivative of an exponential:
Product rule:
Using a calculator, we find the solution , which fits within the interval , satisfying the mean value theorem.
Example Question #598 : Other Differential Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
Using a calculator, we find the solutions , which fit within the interval , satisfying the mean value theorem.
Example Question #599 : Other Differential Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
Using a calculator, we find the solution , which fits within the interval , satisfying the mean value theorem.
Example Question #601 : Other Differential Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
Trigonometric derivative:
Product rule:
Using a calculator, we find the solution , which fits within the interval , satisfying the mean value theorem.
Example Question #602 : Other Differential Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
Derivative of an exponential:
Trigonometric derivative:
Product rule:
Using a calculator, we find the solution , which fits within the interval , satisfying the mean value theorem.
Example Question #603 : Other Differential Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
Trigonometric derivative:
Product rule:
Using a calculator, we find the solutions , which fit within the interval , satisfying the mean value theorem.
Example Question #601 : Other Differential Functions
Let on the interval . Find a value for the number(s) that satisfies the mean value theorem for this function and interval.
The mean value theorem states that for a planar arc passing through a starting and endpoint , there exists at a minimum one point, , within the interval for which a line tangent to the curve at this point is parallel to the secant passing through the starting and end points.
In other words, if one were to draw a straight line through these start and end points, one could find a point on the curve where the tangent would have the same slope as this line.
Note that the value of the derivative of a function at a point is the function's slope at that point; i.e. the slope of the tangent at said point.
First, find the two function values of on the interval
Then take the difference of the two and divide by the interval.
Now find the derivative of the function; this will be solved for the value(s) found above.
Derivative of an exponential:
Trigonometric derivative:
Using a calculator, there are multiple solutions; on the interval , the one that satisfies the mean value theorem is
Certified Tutor
Certified Tutor